Applied Research Laboratory

Technical Report

PARTICLE TRACE ANIMATIONS FOR 2-D, STEADY STATE,
MULTIPHASE, RECIRCULATING FLOW FIELDS IN A
CLOSED BATH COMBUSTOR OF LIQUID METAL FUELS

by

T. T. Blackmon
T. F. Miller

DISTRIBUTION STATEMENT it

Approved for publie rewease;
Distribution Unimited

PENNSTATE

19960627 004
|2k
v i

The Pennsylvania State University
APPLIED RESEARCH LABORATORY
P.O. Box 30
State College, PA 16804

PARTICLE TRACE ANIMATIONS FOR 2-D, STEADY STATE,
MULTIPHASE, RECIRCULATING FLOW FIELDS IN A
CLOSED BATH COMBUSTOR OF LIQUID METAL FUELS
by

T. T. Blackmon
T. F. Miller

Technical Report No. TR 96-005
June 1996

Supported by: L.R. Hettche, Director
Space and Naval Warfare Systems Command Applied Research Laboratory

Approved for public release; distribution unlimited

REPORT DOCUMENTATION PAGE ‘Form Approved

OMS No. 0704-0188

| e v o T S o e T BT TR
1. AGENCY USE ONLY (Leave blank) | 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

Public reporting burden for this colk of infor " d tO ersge | hOur DBY reIBONNe, INCUINgG the time fOr reviewing inetructions, " - .
gathering and Mautaining the deta needed, and completing and reviewing the collection of information. Send commenty searching existing deta sources,
S itaction of informetion, for thes burden, t Washv ths burden estimate or 3ny Gther M0ect of this

Daves Highway, Sulte 1204, Arlington, V. uzn4£§t:3e.mn,«u.u,:ﬁ?2322:222333E::::%qiﬁsﬂtﬂaﬁzﬁ:::8?:;&"’”*""

Moo (,/Q(: Undergraduate Honors Thesis
P —————————————— —
4. TITLE AND SUBTITLE pParticle Trace Animations For 2-D, Steady S. FUNDING NUMBERS
State, Multiphase, Recirculating Flow Fileds in a Closed
Bath Combustor of Liquid Metal Fuels

6. AUTHOR(S) 1999
T. T. Blackmon
T, F. Miller

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION |
Applied Research Laboratory REPORT NUMBER

The Pennsylvania State University
P. 0. Box 30

State College, PA 16804 TR#96-005

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING

AGENCY REPORT NUMBER

Space and Naval Warfare Systems Command
Code 0OOL

2451 Crystal Drive

Arlington, VA 22202

11. SUPPLEMENTARY NOTES

Includes Video Tape: Particle Trace Animations

12b. DISTRIBUTION CODE

Bpprovet & puk
Digwlbhuton Un¥om

o

13. ABSTRACT (Maximum 200 words)

A CFD post processing technique was designed which employs computer graphics
to generate particle trace animations for 2-D, steady state, multiphase, closed,
recirculating flow fields. A particle trace algorithm, which uses a Huen predictor/
corrector time stepping method, a Lagrange shape function interpolation method,
and a special stopping criteria for recirculating flow fields, calculates the path
a Lagrangian particle in an Eulerian flow field. Then, computer graphics techniques
are used to represent and animate fluid particles along their calculated paths. This
technique was developed for a single phase flow field, then extended to a multiphase
flow field which models a closed bath combustion of a liquid metal fuel. Capabilities
were developed to plot scalar contours of flow field quantities as background images
for the particle trace animations. Scalar contours of x-ray attenuation levels were
then plotted for a multiphase flow field to simulate x-ray radiographs of closed
combustion of liquid metal fuels. Volume fraction data of the phases was also used
to plot background color contours and to control the individual color intensities
of multiple color fluid particles representing the various phases.

114, SUBIECT TERMS . 15. NUMBER OF PAGES
Scientific Visualization v 141
Flow Visualization I'16. PRICE CODE
CFD

17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION [20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OFf ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

DISCLATNER NOTICE

" THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF

COLOR PAGES WHICH

REPRODUCE LEGIBLY ON BLACK

DO NOT

AND WHITE MICROFICE

E.

" Abstract

A CFD post processing technique was designed which employs
computer graphics to generate particle trace animations for 2-D,
steady state, multiphase, closed, recirculating flow fields. A particle
trace algorithm, which uses a Huen predictor/corrector time stepping
method, a Lagrange shape function interpolation method, and a
special stopping criteria for recirculating flow fields, calculates the
path a Lagrangian particle in an Eulerian flow field. Then, computer
graphics techniques are used to represent and animate fluid particles
along their calculated paths. This technique was developed for a
single phase flow field, then extended to a multiphase flow field
which models a closed bath combustion of a liquid metal fuel.
Capabilities were developed to plot scalar contours of flow field
quantities as background images for the particle trace animations.
Scalar contours of x-ray attenuation levels were then plotted for a
multiphase flow field to simulate x-ray radiographs of closed
combustion of liquid metal fuels. Volume fraction data of the phases
was also used to plot background color contours and to control the
individual color intensities of multiple color fluid particles
representing the various phases.

Table of Contents

LISt Of FIGUIES......uerurerreeenrreseesisssssassssssassassasssnsssssssssnsssessesssssassassssssssssnsssssssaes i
Chapter 1: INTOQUCHON.......cceieerereerereeeereresaesreseassesessessesssnssnsessesssesernsesessaes 1
Chapter 2: Background
Flow Patterns and Visualization.........ccceeeeeeceerncreneruesseecsnesnesaesnenns 3
Experimental Flow Visualization.........ccceoseeccescensicncccsscrsnnsnssensenes 7
Numerical Flow VisualiZation.......ccceeeeeererecseersnerseeecseessseseeessnsenneene 14
Chapter 2: Particle Path Calculations..........eceeeeereemeseressseescmsescssessasesesenns 22
Eulerian vs. Lagrangian DesCriptions........cc.ccveeusescnsecnccssacsssnanes 22
What Path? .23
Mechanics of Path Calculations........ccccceevvnreressuiessenssencseecsenescnscnes 24
Initial CONAILONS....cemeermirecssesacsnesssnsisecsssessesessaracnssisasesassenessassencassesens 25
Time Step INtErval.....cicesecernecenecseissinsseseeneesesnsennrensaseesesans 26
Time Stepping Methods.....cccieeiieecericnensnsssssisssesssssacsssissnosnsssassasens 27
Interpolation MELHOGS .ceveeenreeenmeaneseemmsssesmmesssssssssssesssmmonssssssasessssnens 37
Stopping Criteria......cceersrreeerererernssesnsnsencnenasasssnasnss cesvassssenssssrsanans 49
Boundary Crossing.....ceesesssesessescssssssssssssossssssssssasassssnas w35
Particle Trace Algorithm.........cccceerereeennees cereesestenreaae 56
Chapter 3: Mechanics of Computer GraphicCs.......cccceceeeercresersnrsennsansanes 57
Drawing Graphical Primitives. ceresessstesssssasssutsnisastsnssssearersane 57
Higher Order Drawing Through the Use of NURBS................. 59
Graphical Objects and Double Buffering.......ccccceeecceevcereccnrecnennnee 62
Controlling Colors and Color Mode........ccoueerevecccucrccscnccananns .67
Shading.... 69
Blending.. 70
Chapter 4: Applied EXamples......ccccvvevcrescccsncrennesensennrencussensnsseseesessesesasaens 72
Mint Flow Field 73
Radiograph Simulations............ cenevesssresenssasnsssenstsaens 78
Chapter 6: Conclusion....... eesveresesnsasssesssssnssrssensessassisasasensssrassentes 85
Appendix A: Linear EQuation SOIVET.....ccciueeueseeiiecsnnsnccnnssasssanssneaacssenaas 89
Appendix B: Source code for Aptl........ccccvcinmncncessnsennscncsncssessnesnnsanes 92
Appendix C: Modified Subroutines for other Apt's..........ccceeuuenn..... 106

Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.

Fig.

2.1
2.2
2.3
2.4
3.1
3.2
3.3
3.4
3.5
4.1
4.2
5.1

5.2

5.3

List of Figures

Velocity vector components.

Deflection of a light ray in a variable density media
Local flow rate vectors for a multiphase flow field
Volume fraction contours for a multiphase flow field
Time stepping methods comparison

Particle location with respect to nodal network
Interpolation methods comparison

Master element in natural coordinates

Stopping criteria for recirculating flows

Control polygon for B-spline

Graphical objects to store particle traces

Digitized x-ray radiograph of a closed bath combustor
at 60; utilization

Contours of numerically calculated x-ray attenuation
levels for the x-ray flow field

Color contour background images for x-ray particle

trace animations

P§.

12
20
21
34
37
46
41
51
60
65
77

78

80

Chapter -1: Introduction

The traditional post processing technique for displaying
velocity vector field output from Computational Fluid Dynamics (CFD)
is to simply plot vectors representing the magnitude and direction of
the velocity field at the nodal locations. @ Common alternative
methods for numerical flow visualization of velocity vector fields
include mathematically calculatirig the streamlines or path lines
(particle traces) of the flow field and then either plotting static
images of these flow patterns or animating fluid particles along the
flow patterns. The objective of this project was to develop a CFD post
processing technique for generating animation sequences of 2-D,
steady state, multiphase, closed, recirculating flow fields using
particle systems.

Although particle animation programs have been previously
developed, this project is unique in that the emphasis was placed on
multiphase, closed, recirculating flows. Special consideration was
given to a common problem that occurs with the stopping criteria for
the calculation of a particle trace for a recirculating flow field. By the
very definition of a steady state, recirculating flow, the path of a
fluid particle should be a closed loop. However, due to numerical
inaccuracies in the CFD solution and the particle trace calculation,
spiraling and overshoot of the calculated path arise if a particle trace
does not return to its exact initial location. Therefore, a stopping
criteria was developed for the particle trace calculations which helps

eliminate the path spiraling and overshoot effects particular to

recirculating flow fields.

In addition, animatin_;g multiphase flows presents another
challenge in visually distingﬁishing between the several components
of the flow field. Although CFD solution files include information
related to the volume fractions of the particular phases.at the nodal
locations, methods must be developed to visually convey this
information during the particle trace animation. Several techniques
were explored to address this problem. One technique was based on
an existing experimental method for visualizing multiphase flows --
X-ray radiography. Another techniciue uses the volume fraction data
to properly texture the animated fluid particles with color and
transparency.

This project is also unique in the approach taken to animate the
fluid particles along the calculated paths. A method to animate the
fluid particles was developed which separates the particle trace
calculations from the animation sequences and stores the calculated
path information as a series of images rather than a numerical data
base. This drastically reduced the computational requirements in
CPU speed and memory that limit other methods of animating
particle traces. Furthermore, the computationally efficient method
that was developed enables the animation of multiple fluid particles
along numerous particle traces, while preserving smooth motion, so

that a dynamic picture of the entire flow field pattern may be

visualized.

Chapter - 2: Background

Generating animation sequences of single phase and
multiphase flow fields using CFD output requires an understanding of
the concepts of streamlines, pathlines, streaklines, and timelines.
Traditional methods of experimental and numerical flow
visualization should also be investigated. This background will
provide a basis for developing the techniques used in this work. The
following sections provide the background of flow visualization that

was researched for the project.

Flow Patterns and Visualization

Streamlines

A streamline is defined as a line tangent to the velocity vector
at a given instant. [1] Streamlines may be found using other flow
vectors ‘as well since they are defined by multiplying the velocity
vector by a scalar and thus do not affect the vector direction.
Streamlines can be easiiy calculated mathematically from the
velocity field. For every vector dr which is tangent to V, the
respective components must be in exact proportion, see Figure 2.1.

Mathematically...

25

dx _dy _dz _dr.
u v S w TV (2.1)

Figure 2.1: Velocity Vector Components

Thus, if the velocity components u, v, & w are known functions
of time and space, Eqn. 2.1 can be integrated to find the streamline
passing through (xo,Yo.Z0,to). However, the calculations may be
laborious and tedious. Alternatively, the calculations may be
simplified by introducing a variable ds and setting it equal to the

ratos given in Eqn. 2.1 such that...

dx _ .9y _,, 8 _ 22)

Now, Eqn. 2.2 can be integrated with respect to s, holding t constant,
with the initial condition (Xo,¥0,Zo,to). Then s may be eliminated to

obtain f(x,y,z,t) which represents the streamline.

Pathlines

A pathline is defined as the actual path traversed by a given
fluid particle. [1] However, unlike the streamlines, the pathlines
calculated for the velocity field will not coincide with the pathlines
calculated for other flow vectors. For a velocity field, a pathline may
be calculated through the integration of the relationship between

velocity and displacement...

dx=u*dt; dy=v*dt; dz=w *dt (2.3)

Eqn. 2.3 may be integrated with respect to time using the initial
condition (Xo,Yo0,Zo,to). Then, time may be eliminated to yield the
pathline function f(x,y,z).

Alternatively, a pathline may be numerically computed by
choosing a set of initial conditions and time stepping a fluid particle
through the flow field. This typically requires selecting an
appropriate time step interval, small enough to accurately compute
the pathline, interpolating the fluid particle velocity components
from the known nodal velocities, and establishing the appropriate

stopping criteria for the path calculation.

Streaklines

A streakline is defined as the locus of fluid particles which
have earlier passed through a prescribed point. [1] Streaklines may
also be calculated mathematically through the integration of the
relationship between velocity and displacement. Again, Eqn. 2.3 may
be integrated with respect to time. However, retaining time as a
parameter, integration constants may be found which cause the
pathlines to pass through (xo,Y0.,Zo) for a sequence of times C < t.

Then, ¢ may be eliminated from the result to obtain the streakline

function f(x,y,z).

Timelines

A timeline is defined as the set of fluid particles that form a
line at a given instant. [1] A timeline can be calculated
mathematically by first determining the pathlines for a column of
initial location.s. Then, a timeline is found by joining the endpoints
of the pathlines at a given instant. Although this does not directly
yield an equation representing the timeline, a graphical image of the
timeline may be obtained and an equation of the timeline may be

generated with an appropriate curve fit.

w h flow ms rel 2
Streamlines, pathlines, and streaklines converge onto the same
curve for a steady state flow field. However, these lines are not
identical for unsteady flows. Reference 2 illustrates this principle

using experimental flow visualization of water over an oscillating

plate. This work focused on 2-D, steady state, recirculating flow
fields. Therefore, the calculated particle traces represent the
streamlines and streaklines in addition to the pathlines of the flow
field. In addition, the calculated particle traces should return to the
initial location to ensure the closure of streamlines in a recirculating

flow field.

Experimental Flow Visualization

Experimental flow visualization may be classified as intrusive
or non-intrusive. Intrusive experimental flow visualization involves
methods that in some way directly interact with the flow field.
However, the disturbing effects of most intrusive techniques can be
minimized to be insignificant. Non-intrusive experimental flow
visualization involves methods that do not interfere with the flow
field.

There are a wide range of both intrusive and non-intrusive
experimental flow visualization techniques. The more interested
reader may refer to the literature for detailed explanations covering
a variety of experimental flow visualization techniques. [5-11] The
following intrusive and non-intrusive flow visualization techniques

were determined to be relevant for this project.

Intrusive:
1) Foreign Material Additions

2) Electrolytic Techniques

Non-intrusive:
1) Optical Techniques
2) Radiography

Intrusive Experimental Flow Visualization

Foreign Material Additions

A widely used intrusive experimental flow visualization
technique involves the addition of foreign material into a gaseous or
liquid fluid flow. Thus, the observer actually views the motion of the
added material, not the motion of the fluid. However, the difference
between the fluid motion and the particle motion can be made
negligible by using a foreign material whose density is the same
magnitude as the fluid density. [5] In doing so, the particle motion
accurately represents the direction and magnitude of the fluid
velocity.

Foreign particle additions usually involve the release of dye,
smoke, or solid particles at discrete points in the experimental flow
field. Foreign particle additions provide an excellent and easy means
for visualizing fluid motion. When such foreign material is released
into the flow field, its motion is influenced by the mean flow velocity.
Thus, different classes of flow patterns may be visualized depending
on how the foreign material is introduced and released into the flow.

Streamlines can be experimentally visualized by releasing

numerous small particles throughout the flow field. Then, a

photograph is taken with a known exposure time so that each
particle appears as a streak; This directly yields the magnitude and
direction of the velocity at all particle locations over an extremely
short interval of time. The streamlines may then be superimposed
on the photograph as curves which are tangential to these particle
streaks.

Streaklines can be experimentally visualized through the
continuous release of dye, smoke, or particles from a vspccificd
location in the flow field. Because streaklines are defined as the
locus of fluid particles which have earlier passed through a
prescribed point, it is important that the selected location from which
the foreign material is released be fixed in time and space.

Pathlines may be generated experimentally by the time
exposure of a single marked particle moving through the flow.
Release of a single particle into the flow field can provide insight into
the flow near a critical area such as a boundary layer. Alternatively,
the release of numerous particles into the flow provides an excellent
means for gaining an understanding of the flow field.

A pair of films which demonstrate the use of foreign particle
additions as a tool for experimental flow visualization are given as
references [2-3]. The use of foreign particle additions is also

graphically illustrated through photography in reference [4].
Electrolytic Techniques

The primary electrolytic technique involves the release of

hydrogen bubbles into an experimental flow field. This method is

similar to the release of dye, ‘émoke, or particles in that the motion of
small hydrogen bubbles is used represent the fluid motion.
However, hydrogen bubble injection is based on the process of
electrolysis. If the fluid of interest is an electrolytic conductor, gas
bubbles may be generated within the flow field through electrolysis.
An excellent example is the generation of hydrogen and oxygen
bubbles in an aqueous solution (water is an electrolytic conductor).

Two electrodes are placed in the flow field and a DC current is
applied across the electrodes. This causes the formation of oxygen
bubbles at the anode and hydrogen bubbles at the cathode. Because
hydrogen bubbles are lighter and smaller than the oxygen bubbles,
the hydrogen bubbles have less of an effect on the flow. Therefore,
only the hydrogen bubbles are used as the tracers and the oxygen
bubbles can be eliminated by placing the anode outside the region of
interest. The ‘primary advantage of hydrogen bubble injection is that
the rate of release of the hydrogen bubbles can be easily controlled.
[5] Also, normal tap water may be used as the fluid since it is an
electrolytic conductor.

Hydrogen bubble injection is most often used for the
experimental visualization of timelines and velocity profiles. By
using a thin wire as the cathode, pulses of hydrogen particles may be
released at a given instant. The wire can thus be stretched across
the flow field in any feasible fashion to produce appropriate
timelines and velocity profiles. This technique is an excellent way to
visualize the velocity differences between the top and bottom of a

wing section or to visualize the velocity profile near a wall.

10

n-intrusive Experimental Flow Visugalization
Optical Techniques

Experimental flow visualization methods which are non-
intrusive often involve an optical technique applied to variable
density fluids. Because of the variation in fluid density, intrusive
techniques such as the addition of foreign material cannot be used.
However, it is possible to use the principal that the optical index of a
fluid is a function of fluid density for experimental flow visualization.

In optical techniques, rays of light are passed through a
variable density flow field. Each ray of light is thus disturbed by the
variation of the optical index of refraction caused by the variation in

fluid density. This has two simultaneous effects on the light rays.

1) The light rays are deflected from their original direction.
2) The light rays experience a phase shift owing to different

optical path lengths

These effects are the basis for experimental flow visualization which
use optical techniques in variable density flows.

Figure 2.2 simulates the effect of variation in gas density (and
subsequent variation in optical index of refraction) on rays of light

which pass through the flow field.

11

Phosphorous

t*

Incident Light
-

time of
arrival

Figure 2.2: Deflection of a light ray in a variable density flow media

By assuming that the index of refraction is a function of space
only and not time (stationary flow), the variation in gas density

effects the following quantities.

1) Displacement QQ*
2) Angular deflection 8 — 6*

3) Phase shift ® - o*

Each of these quantities are used as the basis for an optical
technique in variable density flows. [5] The shadowgraph technique
is based on the displacement QQ*. The schlieren technique is based
on the angular deflection © — ©*. The interferometer technique is

based on the phase shift @ — *, due to the difference in path length.

12

Radiography

Radiography is a non-intrusive experimental flow visualization
technique which is extremely useful for multi-component flows and
for flows with limited optical access. " The underlying principle of
radiography is to form an image through the attenuation of x-rays or
neutrons by different media. The attenuation, A, of a multi-media

system to incoming x-rays or neutrons is given by...

A=10- Zjn=1 (K@*x®) (2.4)

where....

n = total number of different media present
K@) = attenuation coefficient or cross-section of media j

x0) = distance the x-ray or neutron must travel through media j

If x-rays or neutrons are targeted at the flow field of interest,
the variations in attenuation levels will appear as bright and dark
regions on a phosphor screen placed opposite the incoming x-rays or
neutrons. From the image formed through the attenuation of x-rays
or neutrons, a spaced averaged approximation of the flow
composition may be obtained through knowledge of the attenuation
levels of the particular media in a multi-phase flow field.
Furthermore, real-time radiography (RTR), or continuous imaging of
a multi-component flow field with the aid of video processing
equipment, can provide a dynamic flow pattern visualization of the.

most attenuating species. RTR has been successfully applied by

13

Parnell, et al [12-13] to stud"y the closed combustion of liquid metal
fuels. Here, x-ray radiograbhy provides a 2-D view of a rectangular,

3-D, multiphase flow field.

Numerical Flow Visualization

The computer provides a powerful tool for the study of fluid
flow phenomena. Computational Fluid Dynamics (CFD) has become an
integral part of fluid mechanics research and design, joining
experimental and analytical methods as the primary basis of study.
Because of its relative speed and reduced cost in comparison to
experimental methods, CFD is widely used as a preliminary research
and design tool. Then, in the later stages of a project, ‘experiments
can be conducted to verify final designs and results.

The output generated by CFD, however, can be quite large,
generally consisting of data files of flow quantities at nodal locations
as well as the nodal coordinates. Thus, the extensive use of computer
graphics to post process and display CFD output has been developed
as a primary method for understanding the results of CFD.
Furthermore, the fluid investigator is usually concerned with more
than just flow quantities at specific locations. Trends in fluid
properties and critical points in the flow field, which provide
considerable insight into the flow physics, can be easily visualized
and perceived with the aid of computer graphics. Computer software
packages for numerical flow visualization are commercially available

and most CFD packages include their own post processing routines as

14

well as the grid generatio;n (geometric modeling) and solving
routines. PLOT3D [14], developed by Pieter Buning at NASA Ames
Research Center and FAST [15] are excellent examples of CFD post
processing software packages which run on a Silicon Graphics IRIS-
4D workstation. Buning has also published numerous papers on flow
visualization in CFD and the use of computer graphics for numerical
flow visualization. [16-18] Common numerical flow visualization
techniques include vector plots, contour plots, and particle traces.
More recent developments in numerical flow visualization include

vector field topology and animated particle traces.

Vectors

Plotting vectors at nodal coordinates to represent the
magnitude and direction of flow quantities such as velocity and flow
rate is a conventional and widely used numerical flow visualization
technique. Figure 2.3 is a computer graphics display of a velocity
vector plot for a 3-D, multiphase, CFD flow field. [19] The image was
generated using PLOT-3D software on an IRIS-4D GT workstation.
Computer software for plotting vectors allows the user to import
nodal coordinates and vector components at the nodes. Then the
user can scale, color and shade the vectors to obtain a picture which
visually represents the vector field.

However, because of the spatial complexity and variation in
relative magnitudes of vector fields, plotting vectors can sometimes
result in a cluttered display which is difficult to comprehend. This is
particularly true for large, complex, 3-D vector fields, as in Figure

2.3. In these cases, particular regions of interest in the flow field or

15

2-D cross-sections may be .displayed to reduce the data set and
simplify the picture. However, this limits the amount of information
that the user can obtain from the vector field. Nevertheless, vector

plots remains a primary technique for numerical flow visualization.

CQDtQUI’S

Contours of scalar quantities such as pressure, density, and
temperature may be represented using lines, colors or surface height
variation over the flow field. Typical CFD post processing software
allows the user to input a scalar data file and define a scale, or range,
of colors or surface height to display the variation in the scalar
quantities over a region of interest. In addition to providing
considerable insight through a concise picture into the variations in a
single flow variable, plotting contours also reveals observable trends
and relationships between flow field variables. Figure 2.4 is a
computer graphics display of volume fraction contour plots using iso-
lines for the three components of a multiphase flow field using PLOT-

3D software on an IRIS-4D GT workstation. [19]

Vector Field Topology

Vector field topology has recently been developed as a tool for
visualizing the key aspects of a vector field. [20-21] The vector field
topology consists of the critical points in a vector field, where the
magnitude of the vector goes to zero, and the integral curves and
surfaces that connect the critical points. For a CFD velocity vector
field, the critical points may be sinks, sources, attracting and

repelling spirals, and saddles. The integral curves are the particle

16

traces, streamlines, and stream surfaces which can be generated
from the integral curves an'd surfaces by choosing appropriate initial
conditions. Thus, a topological map of a vector field showing the
critical points and the integral curves and surfaces can provide an
uncluttered picture describing the important features of a large,
complex, 3-D vector field. Vector field topological capabilties exist in

the FAST software package.

Particle Traces

Particle traces are simply the numerically calculated pathlines
of a CFD flow field. By specifying a set of initial conditions, which
include the initial location and initial velocity of a fluid particle, and
a time step size, the path of a fluid particle may be calculated. The
calculation of particle traces involves using a time stepping method
to march a fluid particle in time, an interpolation method to
determine fluid particle quantities from given nodal quantities, and a
stopping criteria to determine the end of a path calculation.

Particle traces may be easily visualized using computer
graphics. Conventionally, a particle trace is represented as a static
image of a curve or series of connected line segments which pass
through the calculated points of a particle path. Therefore, to
generate a static image of a particle trace requires specification of
iriitial conditions and time step size, calculating the particle trace,
then displaying the particle trace on an appropriate coordinate
system with respect to the flow field geometry.

More recent efforts have gone towards animating particle

traces. By providing a dynamic picture of the fluid motion through

17

the solved velocity field, particle trace animations allow a viewer to
readily observe changes in flow direction and speed, easily recognize
flow patterns, and obtain qualitative insight into the general flow
field characteristics. = By animating a relatively few number of
particle traces, an observer can track individual fluid particles along
their calculated paths and obtain an understanding of localized
behavior of the flow field. When a very large number of particle
traces are used in the animation, an understanding of the overall
flow field is obtained.

However, animating particle traces is a technical challenge in
terms of computer speed and memory. Presently, to animate a fluid
particle in real-time, as the particle trace is calculated, and still
observe smooth motion, either requires the speed of a CRAY super
computer or limits the partic-lc trace animation to a very small
number of fluid particles. [22] This may be overcome by filming
stills of the particle traces at individual time steps then playing the
stills back with a video recorder. However, this method is
cumbersome and time consuming. Another option, which involves
first calculating the particle trace and storing the path information as
a data file, then using the path data for the animation, reduces the
extensive CPU speed requirement of real-time particle trace
animations; however, the memory required to store the path
calculations becomes too large if numerous particle traces are to be
animated. Therefore, creative approaches must be developed within
the constraints of computer graphics capabilities and computer speed

and memory if particle trace animations are to be generated using a

18

modern workstation. Examples of work with particle traces and

particle systems is given in references [23-24].

19

of a) fuel, b) vapor, and c) product. Operating conditions are

.

m

.

" o

o o=

© W
-

zs

O

> -

33
-
[

o so=

[

4

]

Local flom-
de

those

Fig.1.3

°g "B8i4 Joj paqiiasep ssOyl . W-
.o;nm:o:_vcooac_un._oao.uu:vo..aaovs...on->3._Su?uoo..s“coo:o:o-:!_g —.- .ﬂ—

AR

1300084 BOdUN pe ¥
SHNALNGD NOTADGHI 3N04 RIVE BOLIUN

Chapter 3: Pa\'rticle Path Calculations

Eulerian vs. Lagrangian Descriptions in Fluid Mechanics

There are two distinct descriptions used in fluid mechanics --
the Eulerian and the Lagrangian. [1] The Eulerian method concerns
the flux of fluid or particles through a specific control volume. Flow
field values such as the pressure, p(x,y.z,t), temperature, T(x,y,2,t),
density p(z.y.z,t), and velocity V(x,y,z,t) are computed as functions of
space and time. Thus, the Eulerian method emphasizes the space-
time distribution of fluid properties.

' | Alternatively, the Lagrangian method is concerned with
individual particles moving through the flow field. In the Lagrangian
method, the control volume is usually the boundary of the particle
under consideration. The positions x(t), y(t), & z(t) as well as the fluid
properties of pressure, p(t), temperature, T(t), density, p(t), etc.... are
computed as a function of time for an individual fluid particle. Thus,
the Lagrangian method emphasizes the changes of fluid properties
for an individﬁal fluid particles as it moves through the flow field.

The Eulerian method is more widely used in fluid mechanics.
Scientists and engineers are usually concerned with global flow
quantities, that is the space-time distribution of fluid properties, and
the Eulerian method yields these results. However, the Lagrangian
method may be more suitable for some sharply bounded flow
problems such as the behavior of an isolated fluid droplet descending

through the atmosphere. Also, interparticle collisions and

22

interactions can adequately describe a continuum flow field when a
statistically significantly number are calculated using Lagrangian
techniques.

Because the Eulerian method is more widely applicable in fluid
flow analysis, the data sets used as input for CFD post processing are
usually obtained from an Eulerian flow field. However, to animate
particles in an Eulerian flow field requires determination of
individual particle paths, which is a Lagrangian technique.
Therefore, the goal is to develop a method for calculating the path of

a Lagrangian particle in an Eulerian flow field.

What Path ?

To calculate the path of a Lagrangian particle in an Eulerian
flow field, the physical significancg of the particle path must be
determined. By definition, the flow pattern obtained from tracing
the path of a fluid particle is a pathline. Thus, the experimental
analog would be a foreign material addition to produce pathlines.
However, by conveniently assuming that the particle’'s velocity is
exactly equal to the fluid velocity at the location of the particle, the
particle in no way effects the flow quantities. Thus, the numerical
technique is truly non-intrusive, unlike the experimental analog.

Furthermore, if the flow field is steady, then the particle path
also represents a streamline and a streakline of the flow field. Even
if the flow is unsteady, streaklines and timelines may be generated

by controlling the release of the particles into the flow field. A

23

streakline may be observed by the release of numerous particles
from a fixed location over an interval of time. Similarly, a timeline
may be observed by the simultaneous release of a column of
particles at a given instance.

The extension to multiphase flows is not as obvious. The
question arises as to which flow vectors should be used to "move” a
fluid particle during a path calculation? A typical CFD output file for
a multiphase flow consists of nodal velocity components for each
phase as well as the volume fractions of each phase at the nodes.
Therefore, various combinations of velocities, or flow vectors, may be
used in the path calculations.

As stated previously, when a foreign material is released into a
flow field, its motion is influenced by the mean flow velocity. Thus,
to remain consistent with the experimental analog of foreign material
addition, the mean flow velocity of the multiphase flow field should
be used as the particle velocity in the path calculations. The mean
flow velocity for a multiphase flow field is the volume fraction

average of the phase velocity components. Mathematically...
where...
" Vg = mean flow velocity

©; - volume fraction of phase i such that Z0; = 1

Vi= velocity of phase i

24

However, it is possible to use other combinations of flow
vectors for the particle path calculations of a multiphase flow field.
For example, separate particle traces may be calculated for each
phase by using the velocity components of a particular phase to
move the Lagrangian fluid particle. Then, the particle traces for each
particular phase may be distinguished using colors. Also, since
experiemntal x-ray radiographs show the movement of the most
attenuating component of the flow field, attenuation data may be

plotted as color contours for the particle trace animations and the

velocity components of the most attenuating species may be used to

calculate the particle traces.

Mechanics of Path Calculations

Calculating the path of 2 Lagrangian particle in an Eulerian flow

field involves the following procedures...

i) Establishing the initial conditions and an appropriate time
step interval.

ii) Time stepping the particle through the flow field.

iii) Interpolating particle quantities (namely velocity
components) from the known nodal values.

iv) Stopping criteria for the calculation of a particle’s path.

25

Initial Conditions and Time Step Interval

Establishing the initial conditions of a Lagrangian particle
involves the determination of the initial location and initial velocity
of the particle. The initial velocity of the fluid particle is easily
calculated by equating it to the fluid velocity at the initial location.
Thus, establishing initial conditions of a Lagrangian particle for a
path calculation reduces to only detérmining the initial location. Two
methods‘ have been developed in this work and implemented for
determining the initial location of a Lagrangian fluid particle.

One method allows the user to select the initial location
interactively. This method is suitable for observing a select number
of pathlines at specific regions of interest. A second method provides
a user subroutine which instructs the program to automatically
establish initial locations for numerous particles. This method is
more suitable for observing aggregate fluid motion because it allows
numerous particles to be released at initial locations scattered
throughout the flow field. This method also allows the user to
generate specific flow patterns such as streaklines and timelines.

For the particle path calculations, a constant time step interval,
dt, was employed because it eliminates the need to calculate a new
dt for each time step. This simplification considerably reduces
computational time. Also, a variable time step is unnecessary
because the flow fields used as data sets are steady state‘.
Furthermore, a constant time step facilitates the simultaneous

animation of multiple particles in the flow field.

26

An initial time step interval was chosen which limits the fastest

. 1 . .
particle to advance no more than E grid point each time step. Thus,

to determine the time step interval, the maximum velocity in the
flow field and the minimum distance across its control volume are
calculated. Then, the time step interval, dt, is computed by dividing
the minimum distance by the maximum velocity. However, the time
step interval calculated in this manner is generally too small for most
flow fields because the optimum dt (max dt such that the particle
motion is accurately represented) is highly dependent upon the
particular flow field under observation. Therefore, the program
allows the user to interactively increase the initial value of dt
computed using the original method, observe the effects in
computational time and path accuracy, and then select a suitable

time step interval for the particular flow field.

Time Stepping Methods

Various methods have been developed for time stepping
Lagrangian particles in Eulerian solved flow fields. [25] For particle
path calculations, the "best” time stepping method is one that
achieves the desired level of accuracy while using the least amount
of computational time. This section outlines several time stepping
methods and compares the methods for path calculations of
Lagrangian particles in a 2-D, steady state, Eulerian flow field. Each

particle path was calculated using the identical CFD data file as input,

27

the same constant time step interval, the same interpolation method,

and the same initial locations.
Eulerian Forward Step
x(t + dt) = x(t) +u(t) * dt (3.2)

This is the most simple of ali the time stepping methods and
forms the basis for the methods that follow. In the Eulerian forward
step, the new particle location only depends on the velocity at the
current location. Thus, only one velocity calculation is necessary and
the Eulerian forward step method requires the minimum
computational time. However, the computational errors involved
with the Eulerian forward step accumulate rapidly, on the order of
dt. Thus, the Eulerian forward step cannot accurately calculate the
particle motion without significantly decreasing the time step
interval, thus raising computational cost. Figure 3.1(a) shows particle
traces using an Eulerian forward time stepping method for several
starting locations in a 2-D, steady state, single-phase, recirculating

flow field in a closed reactor.

Leapfrog

x(t + dt) = x(t - dt) + 2 * u(t) * dt (3.3)

For the leapfrog time stepping method, the first time step is

taken with a Huen time step to obtain an intermediate location. Then

28

the particle is moved again .from the original location to the final
location with an Eulerian forward step that uses a modified velocity
equal to twice the velocity at the intermediate location . After the
forward step is taken, the current location becomes the intermediate
location and the process is repeated. This method is similar to the
Huen time stepping method in that the forward velocity field
influences the particle movement. However, the leapfrog method
uses twice the forward velocity (;'ather than the average of the
forward and current velocities) to move the particle.

In doing so, the leapfrog method anticipates the particle
movement, and the path accuracy is improved over the Eulerian
forward time stepping method although the leapfrog method
requires only one velocity calculation. Thus, the computational time
of the leapfrog method is the same order of magnitude as the
Eulerian forward step. However, by using such a "checkerboard”
method to move a particle, the leapfrog time stepping method is
extremely sensitive to error. If the path calculation begins to deviate
orthogonal to the direction of motidn. the particle movement can
become unstable and oscillate excessively. Figure 3.1(b) shows
particle traces using a Leapfrog time stepping method for several
starting locations in a 2-D, steady state, single-phase, recirculating

flow field in a closed reactor.

Adams-Bashforth

x(t+ dt) = 2(0) + (3 % u(t) - u(t - V) * 5 (3.4)

29

For the Adams-Bashforth time stepping method, the initial
value of u(-dt) is calculated using an Eulerian backward time step.
Then a modified velocity is calculated which is a combination of the
upwind velocity and the current velocity. Thus, the upwind velocity
field, not the forward velocity field, influences the particle
movement.

Because the upwind velocity is simply the velocity at the
previous time step, only one velocity calculation is required. Thus,
the computational time for the Adams-Bashforth time stepping
method is of the same order of magnitude as the Eulerian forward
step. Using the upwind velocity to influence the particle movement
improves the path calculations in most instances. However, the
Adams-Bashforth time stepping fails to perform satisfactory where
large velocity gradients exist because large velocity gradients or
acceleration require anticipation of the forward velocity field. Figure
3.1(c) shows particle traces using a Adams-Bashforth time stepping
method for several starting locations in a 2-D, steady state,

recirculating flow field in a closed reactor.
Huen (predictor/corrector)

x1(t + dt) = x(t) +u(t) * dt
x(t + dt) - (1) + (u(®) + ug(0) * 3 (3.5)

The Huen time stepping method initially advances the particle
using an Eulerian forward step. The velocity at this advanced

intermediate location is then averaged with the current velocity to

30

obtain a modified velocity. ;The modified velocity is then used to
move the particle again from the original location to the final location
using another Eulerian forward step.

By requiring two velocity calculations, the Huen time stepping
method increases the required computational time by a factor of two
over the Eulerian time stepping method. However, the Huen time
stepping method significantly increases the accuracy of the particle
path calculations compared to the Eulerian. Figure 3.1(d) shows
particle traces using a Huen time stepping method for several
starting locations in a 2-D, steady state, single-phase, recirculating

flow field in a closed reactor.

Fourth-Order Runge-Kutta

dt
x; = x(t) +u(t) * 5~
dt
uz = u(xg), x2=x(t)+u2*>"

u3z = u(xz), x3 = x(t)+uz*dt
Ug = 0(13)

Xt dt)=x(t) s(u()+ 27Uz + 27Uz + U S (3.6)

The fourth-order Runge-Kutta time stepping method uses
velocities at three intermediate advanced points on the forward
Eulerian field as well as the current velocity to influence the
movement of a particle. Thus, the fourth-order Runge-Kutta time
stepping method yields a high degree of accuracy for path

calculations. However, because of the increase in the number of

31

velocity calculations reqL;ired, the fourth-order Runge-Kutta
increases the computational time by a factor of four over the
Eulerian forward time stepping method. Figure 3.1(e) shows particle
traces using a Runge-Kutta time stepping method for several starting
locations in a 2-D, steady state, single-phase, recirculating flow field
in a closed reactor.

.c t .) -

Which time stepping method was selected as the "best” for the
particle path calculations? As stated previously, for particle path
calculations, the "best” time stepping method is one that achieves the
desired level of accuracy while using the least amount of
computational time. To generate Figures 3.1(a)-(f), a series of six
starting nodal locations were selectively chosen such that the particle
traces were evenly distributed throughout the flow field. Their
respective particle traces were then calculated for each time stepping
method and displayed as a series of line segments joining the
vertices of the computed time steps. The path accuracy was
compared through visual iﬁspection and the number of timesteps
were recorded to compare the computational cost of the various
methods. These results are given in Table 2.1

For the time stepping methods considered, the Eulerian
forward step, the leapfrog, and the Adams-Bashforth, require one
velocity calculation per time step, and thus use the least amount of
computational time per time step. However, the Euler forward is the
least accurate and also requires a larger number of timesteps than all

other methods. Also, both the leapfrog and Adams-Bashforth fail to

32

perform satisfactorily under certain circumstances, and were thus
eliminated from consideration.

The Huen predictor/corrector and the fourth-order Runge-
Kutta time stepping methods both increase the amount of required
computational time compared to the other methods. The Huen
method requires two velocity calculations per time step while the
Runge-Kutta method requires four velocity calculations per time
step. Also, both significantly increase the level of accuracy in the
path calculations over the Eulerian forward step. Furthermore, the
relative gain in accuracy with respect to increase in computational
time is greater for the Huen method rather than the Runge-Kutta
method. Therefore, the Huen predictor/corrector time stepping
method was chosen as most suitable for the particle path

calculations.

33

enny-o8uny Ispro-yiy (9) 101991100/10301pa1d uany (p)

yuojyseg-swepy (9) Soxydes] (q) plemioy iang (&) :uosuedwod spoyious guiddars swij, 1°€ "8

(2

Table 3.1 : Time Stepping Methods Comparison

Data File :

mint.bin

i-nodes (x-direction) : 46
j-nodes (y-direction) : 24

Linear Shape Function Interpolation

Optimum time step, dt= 7.347 e-2 s

(xmin,xmax)
(ymin,ymax)

= (0.0,0.3556) m
= (0.0,0.0445) m

starting # timesteps / # velocity calcﬁlations

location '

(i,j)

(x,y)m Euler Leapfrog | Adams-B Huen Runge-K

(23,13) 24/24 18/18 17/17 18/36 18/72
(.0936,.0188)

(40,12) 561/561 | 551/551 | 551/551 |552/11041552/2208
1(.3388,.0136)

(3,12) 593/593 | 645/645 | 585/585 |584/1168|584/2336
(.0118,.0136)

(42,6) 857/857 | 532/532 | 843/843 | 843/1686|843/3372
(.3485,.0041)

(3,16) 174/174 | 166/166 | 166/166 | 166/332 | 166/664
(.0118,..0373)

(22,5) 185/185 97/97 68/68 130/260 | 138/552
(.0789,.0026)

Intetﬁolation Methods

When performing a Lagrangian particle path calculation, the
spatial location of the particle at time t will usually not coincide with
the Eulerian nodal spatial locations. Figure 3.6 illustrates a typical
situation encountered during a particle path calculation. The location
of a particle, denoted by P, lies wiwthin the cell which is outlined by

line segments connecting the four nodal locations, denoted by 1,2,3 &

4, that surround the particle.

4 ¥——
.- T TTT - 3
\ \
\ \
\ \
\ \
\ P \
\ x \
\ \
\ \
| \
1

Fig. 3.2 Particle location with respect to nodal network

Thus, a particle path calculation requires a suitable method for
interpolating the particle quantities, specifically the velocity

components, from the nodal values based on the location of the fluid

37

particle. This section outline‘.s three interpolation methods for a 2-D
quadrilateral grid. The interpolation methods are compared by
performing identical particle path calculations and the "best” method
is chosen for the computer program. Again, the "best” method is one
that achieves the desired level of accuracy with the least amount of

computational time.

e Bilinear Averagi

The easiest method for determining particle quantities as a
function of nodal quantities is to perform simple bilinear averaging.
This method is based on the concepi of averaging the particle
quantity from.the nodal quantities, with the proportional influence of
a nodal quantity dependent on the relative distance from the particle
location to the nodal location. Figure 3.6 shows the following

distances.

dx; =Xp-X1; dy1=Yp-Y1 (3.7)
dx2=3p-X2: dy2=Yp-y2 (3.8)
dx3=Xp-X3; dy3=Yp-Y3 (3.9)
dx4=Xp-X4; dy4=Yp-V4 (3.10)
dxi2 =dx; +dxy; dx34 = dx3+ dxg (3.11)
dyi14=dy; +dys; dy23=dyz+dy3 (3.12)

Using simple bilinear averaging, a particle quantity, such as the

velocity component in the x-direction, may be written as...

38

e - Gbiz‘d}’duu1+ dx*dys - dx4dvz . .. dx3*dyy ,
P dxyp*dyi4 dxy2*dy23 dx34*dy23 o dx34*dyi4

(9Y)
—
(83

Due to its simplicity, the simple bilinear averaging interpolation
method requires little computational effort but lacks accuracy.
Figure 3.3(a) shows particle traces using a simple bilinear
interpolation method for several starting locations in a 2-D, steady

state, single-phase, recirculating flow field in a closed reactor.

- point Tavior Series A o

The 4-point Taylor Series approximation method of
interpolating particle quantities from nodal quantities is based on
writing the nodal quantities as a Taylor Series expansion of the
quantity at the particle location. Thus, the nodal quantities, such as
velocity components in the x-direction, may be written as...

du Su, | dx;*dyj
Uj= UP + '8? Ip dx, + sy lp le sxsy lp 2 + Dn@ (3.14)

du
where dxj and dy;, i = 1 to 4, are defined in Eqn. 3.8 to 3.11, 5g1P

o oy , d
8y p. and _x_S;I p are the directional derivatives of u at location P an

Dn@® represent higher order terms.

Equation 3.14, i = 1 to 4, is multiplied by weighting coefficients
A, B, C, and D, respectively such that the resultant coefficients of up
are equal to 1 and the resultant coefficients of the directional

derivatives are equal to zero. This may be written in matrix form

as...

39

1 1 1 1

A 1
dx dx2 dx3 dx4 B 0
[on o an owe J21=[0] Gus
dx*dyy dxo*dys dxi3*dy3z dx4*dy4 D 0
2 2 2 2

This system of linear equations may be solved to yield the
weighting coefficients A, B, C, and D. Finally, the particle quantity,

Up, may be written as...
Up=A*u;+B*uz2+C*u3z+D"uy4 (3.16)

The 4-poiht Taylor Series approximation method of
interpolation yields excellent results for particle path calculations.
As illustrated in Figure 3.3(b), the path accuracy using the 4-point
Taylor Series interpolation method is significantly improved over the
simple bilinear averaging. However, the computational cost for using
the 4-point Taylor Series approximation interpolation is large
because the coefficient matrix in Eqn, 3.15 must be inverted to solve
for A, B, C, and D. A L-U matrix decomposition with maximal column
pivoting linear equation solver was developed for solving the system

of linear equations and is listed in Appendix 1.

Lagrange Shape Functions
The Lagrange shape function method is an isoparametric

technique that is commonly used in finite element analysis. [26-27]

For a quadrilateral grid, the linear Lagrange shape functions, Nj, i = |

40

to 4, are defined such that Nj = 1 at node i and Nj = 0 at the other
nodes. Then, a particle quantity, such as the velocity component in

the x-direction, may be written as...
Up-.Nl'U1+Nz"U2+N3‘U3+N4'U4 (3.17)

Because the Lagrange shape function method is an
isoparametric technique, it is convenient to define a master element,
Figure 3.9, in computational space with natural coordinates (&,n),

such that the shape is squared and § and nrange from -1 t0 +1.

(-1,1) (1,1)
4T_ --------- — 3
| [
| I
| |
| |
[§
l l
I [
l l
1 e — -k 2
(-1,-1) (1,-1)

Fig. 3.4 Master element in natural coordinates

41

The requirement that Ny = 1 at node 1 and N| = 0 at nodes 2, 3,
and 4 is equivalent to requiring that Ny = 0 along the edges& = 1 and

nn=1. Thus, N; may be written as...
Ny=cy*(1-&*(1-1) (3.18)

where ¢ is a proportionality constant which is solved for by using
the boundary condition that Ny = 1 at node 1 where § = -1 and = -1.

Substituting values...
Ni=1=cy=(1-(-1)) * (1-(-1)) (3.19)

. 1 ..
yields ¢y = e A similar approach may be used to solve for the

constants cp, c3, and c4 which yields the desired equations for Nj, i = 1

to 4.
Nj=g*(1-8)7(1-n) (3.20)
Nz=3"(1+8)"(1-n) (3.21)
N3=g*(1+8)" (1 +n) (3.23)
Ng=5"(1-8)7(1+n) (3.24)

Therefore, once the location of the particle has been
determined in computational space (&,7n), the Lagrange shape
functions may be solved using Eqn. 3.20 through 3.24 and a particle

quantity, such as the velocity, may be computed using Eqn. 3.17.

42

To determine the location of the particle in computational space

requires solving the set of equations...

Xp=Ny*x; +N2* 22+ N3 x3+Ng* 14 (3.25)
yp=N1*y1+N2*y2+N3*y3+Ng*yq4 (3.26)

for & and n. For an orthogonal quadrilateral grid, this reduces to...

(3.27)

(3.28)

However, for a non-orthogonal quadrilateral grid, £ and 7
cannot be easily equated in terms of the particle and nodal
coordinates. In such cases, £ and n may be determined by using an
iterative scheme.

The Lagrange shape function method for interpolating particle
velocities from nodal velocities yields excellent results for particle
path calculations. As shown in Figure 3.3(c), the path accuracy for
the Lagrange shape function method of interpolation is comparable
to the accuracy achieved using the 4-point Taylor Series
approximation method of interpolation. Again, this represents a
significant improvement in accuracy over the simple averaging

method of interpolation. However, for an orthogonal quadrilateral

43

grid, the computational time required for the Lagrange shape
function method is significantly less than the time required for the
4-point Taylor Series approximation method because the Lagrange
shape function method does not require the use of a linear equation

solving routine.

Which I lation Method Used?

The interpolation methods comparison was performed in the
same manner as the time stepping methods comparison. Six initial
points were selected as starting locations and particle traces were
computed then displayed. The six initial positions were chosen to
cover the various regions of the flow field and the particle traces
were drawn using line segments to join the time step vertices.
Visual inspection revealed accuracy whereas monitoring the number
of time steps combined with a knowledge of the particular method
revealed computational cost. The results of the interpolation
methods comparison is given in Table 3.2

The Lagrange shape function method was chosen for the
interpolations of particle quantities from nodal values in this work.
This method was chosen for its level of accuracy with respect to
computational cost. Both the Lagrange shape f unction method and
the 4-point Taylor Series approximation method significantly
improve the level of accuracy of particle path calculations compared
to the simple bilinear method of interpolation. However, for a
orthogoﬁal quadrilateral grid, the Lagrange shape function method
achieves the improvement in accuracy over the simple bilinear

averaging without increasing the computational cost while the Taylor

44

series approximation method requires a linear equation solving
subroutine.. Thus, for a orthogonal quadrilateral grid, the Lagrange
shape function method is clearly the "best" method of interpolation

for the particle path calculations.

45

suogouny UL Yd doubdol’ | (V) uvysuwiiaviuuy

souag I10ojAe, 1d-p (q) SuiSersay Ieasuyjig ojdwig (e) :uosuedwod spoyew uonejodiajug €€ 81y

CHE=))

R (v)

Table 3.2 :.Interpolation Methods Comparison

Data File : mint.bin
i-nodes (x-direction

) : 46

j-nodes (y-direction) : 24
Linear Shape Function Interpolation

Optimum time step, dt= 7.347 e-2 s

(xmin,xmax)
(ymin,ymax)

(0.0,0.3556) m
(0.0,0.0445) m

(.0789,.0026)

starting # time steps
location
(i,j) Bilinear Taylor Series Lagrangian
(x,y)m Simple Averaging| Approximation | Shape Function
(23,13) 52 46 46
(.0936,.0188)
(40,12) 20 19 19
(.3388,.0136)
(3,12) 676 810 810
(.0118,.0136)
(42,6) 529 488 488
(.3485,.0041)
(3,16) 257 232 232
(.0118,..0373)
(22,5) 761 829 829

Stopping Criteria

Calculating the path of a Lagrangian particle in an Eulerian flow
field involves a series a small particle movements from the initial
location using the chosen time stepping and interpolation methods.
Any iterative process, such as the particle path calculation, naturally
requires a stopping criteria. However, determining when to end the
calculation of a particle path is not straight forward.

Depending on the type of flow field used as a data set, the
criteria for stopping a path calculation may be quite different. For
external flows over a body or internal flows through a pipe or duct,
the calculation of a particle path would end when the particle has left
the flow field through a defined exit plane. Thus, the stopping
criteria simply involves monitoring the particle’s location with
respect to the exit plane.

However, for steady state, recirculating flow fields, where the
calculated pathlines are also the flow streamlines, the particle does
not exit the flow field. In such cases, the particle should recirculate
and eventually reach the original starting location. Therefore, the
stopping critéria would involve monitoring the particle's location
with respect to the initial location. Unfortunately, the particle rarely
returns to its exact initial location due to numerical inaccuracies in
the CFD sollution and in the path calculation. Thus, a particle may
spiral or overshoot and the computer will fail to recognize the end of
the particle path. |

Furthermore, a particle may enter a stagnation zone, where the

velocity of the flow field is zero or negligible. In such cases, the

48

particle will not move at all or move a negligible distance over a
large number of time steps. To further calculate the path of such a
particle would not be useful and represents wasted computer time.
Therefore, particle stagnation must be recognized so that the path
calculation may be terminated.

Thus, the stopping criteria for a particle path calculation must
be robust enough to handle a variety of flow situations. The
following sections address the stopping criteria developed for

recirculating flows and particle stagnation.

Recirculating Flows

In theory, the stopping criteria for a particle path calculation in
a recirculating flow field is very simple. End the calculation when
the particle returns to its initial location. However, a particle will
rarely return to its exact initial location during a path calculation
because of the numerical inaccuracies in the CFD solution and the
path calculation. Thus, in practice, the stopping criteria for a particle
path calculation in a recirculating flow field must compensate for the
difference between the initial and final location.

One appfoach for overcoming the spiraling caused by the
numerical inaccuracy is to end the path calculation when the particle
returns to within a specified distance of the initial location. Thus, the
path calculation would terminate when the distance between the
current particle location and the initial particle location becomes less
than a specified tolerance, e. However, a reasonable value of € is

highly dependent upon the path length. Furthermore, even if € was

49

defined as a function of path length, situations will arise where the
particle still may not return to within the tolerance region.

An alternative approach was developed in this work which
performs well as a stopping criteria for particle path calculations in a
recirculating flow field. After the first particle time step, a line, Lo, is
defined perpendicular to the line segment connecting the initial
particle location and the current particle location. With reference to
Figure 3.11, the particle path calculation may be terminated when
the particle has twice intersected the line Lo. To recognize when the
particle intersects the line L requires simple linear algebra. The
equation of a line may be written as y = a*x + b, where a is the slope
and b is the y-intercept. Therefore, if the initial particle location is
denoted as (pxy,py1) and the particle location after one time step is

(px2.pyY2). then the line Ly is defined by y = a5*x + bo, Where...

pX2 - P}
2o PY2 - PY1 (3.29)
bo=(py1-px2)* a0 (3.30)

Similarly, if the current particle location is denoted as (px;,pyi)
and the previous particle location is denoted as (pXxj-1,pyi-1), then the

line L is defined by y = a;*x + bj, where...

_DPYi - PYi-1

ai
' pxj - PIj-g

(3.29)

bi = (pyi - pXi) * 3 (3.30)

50

1st intersection

2nd intersection

Fig. 3.5 Stopping criteria for recirculating flows

Mathematically, two lines intersect if the deter minant of their
coefficient matrix is non zero. Therefore, by rewriting Loand Ljin

matrix form as...

[i = Z] = [:;] (3.31)

-ao

.. Lo and L; intersect if...

. { - a .
det ' I --ap+2j#0 ' (3.32)

l'ao

51

Furthermore, the point of intersection is given by Cramer’s Rule as...

bo - bj
Y= —— (3.33)

- 2 * 3j

- ap * bj + aj *bj
-3 * 3

Vi~ (3.34)

Thus, if the lines Ly, and L are found to intersect and the
intersection point (x;y;) lies within ihe range of the line segment Li,
then the particle has crossed the line L,. After the second occurrence
of the particle crossing the line segment Ly, the particle path
calculation may be terminated. The distance between the initial
particle location and the final particle location may be calculated and
reported as a. measure of the numerical error in the CFD solution and
the particle path calculation.

This stopping criteria for a particle path calculation in a
recirculating flow field can be extended to 3-D particle path
calculations. However, instead of defining a line Lo, a plane Py is
defined perpendicular to the line segment joining the initial particle
location and the particle location after one time step. Then, the
particle path calculation may be terminated after the particle has

twice intersected the plane P,.

Particle S .
Particle stagnation may occur during a particle path calculation

if the particle enters a region of very small, or zero, velocity. When

this occurs, the particle will move only a negligible distance over a

52

large number of time steps. 1 To continue the path calculation for a
stagnated particle is undesirable because it represents a waste of
computer time. A method to recognize particle stagnation must be
developed.

A particle is considered stagnated if its velocity components
are too small to move the particle a significant distance over a large
number of time steps. To recognize particle stagnation requires
defining the insignificant distance of travel and the large number of
time steps. Because, these values will depend on the particular flow
field of interest, they will be defined by using parameters of the flow
field.

An insignificant distance of travel is defined as a portion of the
total length of the flow field. With respect to the maximum and

minimum geometric locations of the flow field...

xdist = (xmax - xmin) (3.35)
ydist = (ymax - ymin) (3.36)
dstag = (1.0 E-6) * (xdist2 + ystag2)1/2 (3.37)

Similarly, a large number of time steps is defined as a portion of the

maximum number of time steps allowed for a particle path

calculation, pmax.

mstag = pmax/10 (3.38)

53

Thus, for a particular time step, if the distance traveled is less
than dstag, then increment the stagnation counter, nstag, by one;

when nstag is greater than mstag, end the particle path calculation.

Boundary Crossing

Due to the numerical inaccuracies of the CFD solution and the
particle path calculations, a path may be calculated which contradicts
physical reality by crossing a surface which has been defined as a
'solid wall, or boundary, in the flow field. To compensate for this

particular problem, the following algorithm has been developed.

1. Determine if the particle has crossed a boundary defined as a
solid wall in the flow [ield.
2. If yes, then move the particle again from the previous location,

but only half the distance to the boundary.

In this manner, a particle will never cross a boundary, but may
stagnate there, which is physically acceptable and may be
appropriate. However, it is important to alert the user that a particle
movement has been calculated which crosses a solid wall boundary
in the flow field. In doing so, the user is informed of the nu merical
error which may lie in the CFD solution or the particle path
calculation and the animated particte trace will not simply "hide” the

error.

54

Particle Trace Algorithm

The following algorithm was developed to trace the path of a
fluid particle in a 2-D, steady state, recirculating flow field. A Huen
predictor/corrector time stepping method and a Lagrange shape

function interpolation method were chosen for the particle trace

algorithm.

1. Choose the initial particle location, (px1,py).

2. Set path time step counter, i = 1.

3. Do while stopping criteria not met.
a. Increment time step counter,i=1i+ 1.
b. Interpolate current particle velocity, (puj-1, pvj-1).
c. Calculate intermediate particle location.
i. PXint = PXj-1 * PUj-1 * dt

ii. PYint=PYi-1+pPVi-t " dt
d. Check solid wall boundary crossing.

e. Interpolate intermediate particle velocity, (pUjnt, PVint)-

f. Update particle location.
pui-1 + PUint , dt

i pPXj = PXj-1 + >
Vo- + v.
i pyi-pyin + B g
g. Check solid wall boundary crossing.

h. Check stopping criteria.

4, Stop the particle trace.

55

Chapter 4: Mechanics of Computer Graphics

The particle trace animation software developed in this work
was written for a Silicon Graphics IRIS-4D GT workstation, which
supports the Silicon Graphics Graphics Library (GL). The GL is a UNIX
based library of graphics subroutines which facilitates the
programming of 2-D and 3-D color graphics and animation.
Subroutines are available which provide the user with numerous
capabilities related to controlling the graphical environment. The
following capabilities were employed to animate Lagrangian particles

in a CFD, Eulerian flow field...

Drawing Graphical Primitives

Higher Order Drawing through the use of NURBS
Creating Graphical Objects and Double Buffering
Controlling Colors and Color Mode

Shading

O\}Atho—

. Blending

Drawing Graphical Primitives

Graphical primitives are the basic geometric elements of
computer graphics programming and consist of points, lines, and
polygons. A series of graphical primitives may be used to create

almost any complex shape. A graphical primitive geometry is

57

described by specifying its edges and corners with a list of vertices.
A vertex defines the coordinates of a position, or point, in space, and
connected vertices form an edge. Edges may be connected as lines to
form a wire frame geometry or connected as polygons to form a solid
face geometry. The beginning and end of a vertex list is marked by
special commands which specify the type of graphical primitive.

The features of graphical primitives may be controlled through
different colors and techniques. A point must be assigned a size and
a color. A line must be assigned a linestyle, which specifies its width
and linetype (solid, dashed, or dotted), as well as a color. In addition,
line primitives may be further categorized as polylines, series of
connected line segments, and closed lines, polylines with connected
first and last points. A polygon must be assigned a fill pattern which
controls how and what colors are displayed within the edges of the
polygon. Polygons are categorized as simple or non-simple,
depending on whether their edges cross, and comvex or concave,
depending on whether a line segment joining any two points within
the polygon is completely contained within the polygon.

Graphical primitives were primarily used in this work to
display the flow field geometry. An algorithm was developed to
recognize geor;xctry boundaries, or solid walls, and draw them using
lines. Similarly, an algorithm was developed to draw the CFD grid
using lines that connect the nodes. The line widths and colors
defined for the solid walls and the CFD grid were chosen on the basis
of visual aesthetics. In addition to the flow field geometry, graphical

primitive lines were used to connect the calculated points of a

58

particle trace for comparison -of the time stepping‘and interpolation

methods.

Higher Order Drawing through the use of NURBS

Complex curved lines and surfaces may be created through the
use of Non-Uniform Rational B-Splines (NURBS). NURBS are based on
the principle that a curve or surface may be represented with a
series of parametric polynomials joined in a piecewise fashion to
create a B-spline. A B-spline is shaped through the use of control
points, a basis function, and knots. ‘

In the parametric representation, coordinate of a curve or
surface are explicit functions of a parameter. Thus, the coordinates
(x,y,z) of curve may be written as a polynomial function of a

parameter S...

x(s) = ag + a1*s + a2*s2 + a3*s3
y(s) = bo + b1*s + b2*s2 + b3*s3

Z(s) = cg + C1*s + c2*s2 + C€3%53

where the aj's, bi's, and ci's are known as the control coefficients, and
the degree of the polynomial is the highest exponent (in this case, 3).
Several of these polynomials may be joined in a piecewise fashion to
yield higher ﬁcxibility in the shape of the curve.

A B-spline is a method to connect and represent the piecewise

polynomials describing a curve or surface. A set of control points act

59

as attractors to pull the g:ui'vc or surface into the desired shape.
Control points, which are simply defined by spatial coordinates, form
a control polygon which influences the shape of the B-spline, as in
Figure 4.1 A basis function determines how the control points
influence the curve or surface. For a B-spline curve, the curve
segments represented by the parametric polynomials, need not pass
through the control points, but must be continuous in their first and
second derivatives at the control points where the curve segments
join. A basis function is usually represented by a basis matrix which
acts on the control points to determine the shape of the curve.
Lastly, knots define the relative degree of magnitude of the basis
function's influence on particular control points. In this way, knots
influence the spline by acting as attractors. Knots may even be

defined to force the spline to pass through specific control points.

. Control points

Control polygon

Figure 4.1: Control polygon for a B-spline

60

NURBS were used in this work to represent the fluid particles
for the animation sequences. During a particle trace calculation, the
points, or vertices, defining the path of a fluid particle are stored in

arrays, px(np) and py(np), where...

px(i) = x-coordinate of particle location at time step i
py(i) = y-coordinate of particle location at time step i

np = total number of time steps calculated for a particle trace.

To represent a fluid particle travelling along the calculated
path, a B-spline is drawn using the vertices of the first four time
steps, px(i) and py(i), i = 1 to 4, as control points. Then, the B-spline
is erased and a new .B-spline is drawn using the vertices px(i) and
py(i), i = 2 to 5, as control points. This procedure of updating the B-
spline which represents the fluid particle by one time step is
repeated until i = np.

Using B-splines to represent the fluid particles is advantageous
for several reasons. The B-splines smoothe the particle trace
between time steps while still ensuring that the fluid particle passes
through the calculated vertices for a particle path. Also, each
successive B-spline overlaps the previous B-spline by three
timesteps and helps to provide continuous motion during animation.
Furthermore, the length of the B-spline which represents the fluid
particle is directly proportional to the fluid particle's velocity,

enabling the user to easily visualize accelerations in the flow field.

61

Graphical Objects and Double Buffering

Graphical primitives and NURBS are drawing subroutines which
act in immediate mode. In other words, the computer immediately
displays the images when the subroutines are called. However, it is
often more convenient to define a list of graphical subroutines that
may be implemented at any time. The use of graphical objects
provides this capability and is particularly convenient for computer
animation. To define a graphical object, the user marks the
beginning and end of the drawing subroutines with special
commands that identify the object. Then, the user may implement

the drawing subroutines with a command that identifies and calls the
graphical object. Furthermore, graphical objects may be edited and
changed from anywhere within the graphics ‘program.

Animation in computer graphics is achieved through the use of
double buffering. By default, the display mode in the GL is single
buffer mode, where drawing subroutines are written into a single
frame buffer which is always visible. However, to simulate the
smooth motion required for computer animation, a pair of
framebuffers is employed. In double buffer mode, the currently
visible frame buffer is labeled the frontbuffer and the drawing
frame buffer is labeled the backbuffer. Drawing subroutines are first
written into the backbuffer and then the frontbuffer and backbuffer
are swithched, so that a completely drawn image replaces the
previous one. By drawing into the backbuffer and then "swapping”
frame buffers, flickerring due to elapsed time for the execution of

the drawing routines is drastically reduced.

62

Graphical objects and’double buffering were used in this work
to efficiently animate the fluid particles, represented using NURBS,
along their calculated paths. As stated previously, difficulties with
computer speed and memory arise when animating particle traces.
Because of the lack of CPU speed required for real-time animation of
particle traces, the particle trace calculations needed to be separated
from the particle trace animation sequences. However, it was still
undesirable to store the particle trace information, consisting of
spatial coordinates for every time step, in a data base for use as the
animation data set. Through the combined use of graphical objects
and double buffering, with a thoughtful consideration of traditional
frame-by-frame filming techniques, particle trace animations were
generated with large savings in computational efficiency.

The approach to animating particle traces which was developed
in this work separates the particle trace calculation from the
animation but does not require storing the particle trace information
as a data set by instead storing the particle trace information as a
series of images, or graphical objects. However, it would still be
computationally unfeasible to store a graphical object for every time
step of every particle trace, particular‘y if numerous particle traces
are to be simultaneously animated. Thus, the approach to animating
particle traces must use a finite and managable number of graphical
objects. This was achieved by animating several fluid particles, each
represented as a B-spline through four successive time steps, along
the same calculated path separated by a distance of nobj timesteps,

where nobj is the defined number of graphical objects.

63

To illustrate this principle, let the total number of time steps
for a particle trace equal thirty-five (np = 21), and let the set
number of graphical objects equal seven (nobj =6). Then, the particle
trace may be represented as a series of six graphical objects, where
fluid particles are drawn using B-splines separated a distance of nobj
time steps. Figure 4.2.a through Figure 4.2.f are the six graphical
objects which together represent the particle trace. If these
graphical objects are shown in rapid sequence, the visual effect is to

percieve three (216-3 = 3) separate fluid particles traversing the

entire length of the calculated particle trace. Then, each time a new
particle trace is calculated, the same graphical objects may be edited
to include the appropriate fluid particles representing the new
particle trace.. In this way, the total number of graphical objects
never increases.

This approach to animating particle traces has several
advantageous aspects. By scparating the particle trace calculations
from the animation sequences and storing the particle traces in a
manageable number of graphical objects rather than a data base,
large savings are made in computer efficiency in terms of CPU speed
and memory. Also, by using a set time step interval of equal
magnitude for each particle trace, the relative speeds of the fluid
particles is preserved. Furthermore, by animating several fluid
particles along the same particle trace, a "fuller” animation sequence

to observe the entire flow field is obtained with fewer particle trace

calculations.

64

X
14 13 12 11
15
16 9
x 17
8
x 18
7
6
x 19 5 x
1 2 3 4
M_,_.'-——* x
20
* a
X
(a) graphical object #1

17

x xX
14 13 12 11
15 10
16 : 9
8

X
18
7 x
6
x 19 5
1 2 3 4 /
x x
20y
X
(c) graphical object #3
x 4 13 121 x
15 10
X
16 9 x
17
8
18
7
6
19 5
1 2 3 4
20 X x X X
21
X
(e) graphical object #5

X ‘-ﬂ-\“\
x 14 13 12 11
10

() graphical object #6

Figure 4.2: Graphical objects to store particle traces (nobj = 6, np = 21)

65

However, this approach to animating particle traces has several
limitations. If the set number of graphical objects exceeds the
number of vertices calculated for a particle trace, then only one fluid
particle will traverse the particle trace and it will suddenly
disappear when the current graphical object being edited is greater
than np. This causes a "pseudo-flickering” in the animation sequence
which is observed by a fluid particle suddenly disappearing then
reappearing at the beginning of the graphical object cycling. The
flickering problem was somewhat eliminated by restarting a new

fluid particle at the beginning of the particle trace when i = int(;l;') *

np + 1, where i equals the current graphical object being editted.
However, slight flickering still occurs because the fluid particles may
not completely finish the particle trace within nobj graphical objects

due to the ratio %gg.' not always equalling an inte ger value.

Another problem in the animation procedure is related to the
variation in calculated path length with respect to the total number
of time steps for different particle traces in the same animation
sequence. If the path length is relatively small and the total number
of computed time steps is relatively large, then the computed time
steps will be closely spaced and the fluid particles separated by nobj
time steps may actually be indistinguishable. This causes a
somewhat cluttered particle trace with excessive color intensity and
shimmering where the fluid particles overlap. This problem could
possibly be eliminated by allowing nobj to vary for each particle
trace and depending upon the path lenth as well as np; however, that

would undermine the principle of the animation approach which is

66

based on a preset and unchaﬁ'ged number of graphical objects for the

animation sequences. Nevertheless, this problem associated with the
approach taken to animating particle traces was determined to be

tolerable considering the savings in computational efficiency

Controlling Colors and Color Mode

A standard color monitor for a computer has three color guns
that sweep across the entire area of a monitor screen at a specified
rate between 60 and 76 times per second. The monitor screen
consists of rows and columns of pixels, each containing three
separate phosphors that glow red, green, or blue. The intensity of
each phosphor at a pixel is controlled by the intensity level of a
beam of electrons, between O and 255, that the three color guns
shoot at the pixel. This is represented in the GL as an RGB triple,
where black is (0,0,0) and white is (255,255,255).

Two modes are commonly used for color display -- color map
mode and RGB mode. In both color map mode and RGB mode, color
information is stored in the bitplanes. A single bitplane consists of
exactly one bit of information, a zero or a one, for every pixel on the
screen. When creating graphics, the drawing subroutines write
information into the bitplanes which the computer hardware then
interprets as colors to be displayed at the pixels.

In color map mode, the zeros and ones in the bitplanes are
interpreted as a binary number which references an index of a color

map look-up table. Color map mode is the default mode in the GL

67

and a default color map is conveniently available. To specify a color,
the user simply specifies an integer value of a color map location.
The computer then looks up the RGB triple corresponding to that
color map location and the RGB triple becomes the current color for
all subsequent drawing routines. The user may also change or
modify the default color map by calling a subroutine and providing
an color map index number as well as the desired RGB triple.

In RGB mode, 8 bits (256 values) are provided for each color
component -- red, green, and blue. The user simply specifies a value
from 0 to 255 for each color component. This set of values then
becomes the RGB triple for the current color and all subsequent
drawing routines will display that color on the screen. However, to
use RGB mode in the GL, the user must first set the color mode to RGB
mode with the appropriate GL subroutine.

The selection of a color mode, color map or RGB, in the particle
trace animation software depended upon the desired attributes of
the animation sequence. If a color contour of a flow field variable
was to be shown as a background image for the animated fluid
particles, then color mode was chosen so that a color map could be
produced for the contour color levels. However, if different colored
fluid particles were animated to represent the various components of
a multi-phase flow field, and the color intensity of a fluid particle
depended upon volume fraction data for the various components,
then RGB mode was chosen so that alpha comparisons could be
performed to control color intensity.

In addition, color writemasks which control the writing of color

information into the bitplanes were employed to enable any

68

background images (color contours, reactor geometry, or CFD grid) to
be drawn only once, prior to the beginning of the animation
sequence. To achieve this, the static images were initially drawn into
both the frontbuffer and backbuffer, then special writemask
commands were issued which write-protected the images from being
erased but allowed the fluid particles to visibly pass over the

background images.

Shading

Both RGB mode and color map mode provide the capability to
define the current color based on respective red, green, and blue
intensities. Then, all subsequent drawing routines will be based on
the current color. This is sufficient for drawing flat shaded objects of
uniform color on the screen. However, this is insufficient for for
approximating reality where colors may vary over a surface and
shading effects occur. Fortunately, computer graphics hardware
calculates shading effects and allows the user to vary color over a
surface without specifying the color on a pixel by pixel basis.

A common technique to vary the color across a polygon is
through Gouraud shading. By specifying the true color of a polygon
at each vertex, the computer will shade the polygon based on those
values. Gouraud shading first linearly interpolates the RGB
components from vertex to vertex along each edge of the polygon.
Then, Gourapd shading linear interpolates the colors from edge to

edge across the face of the polygon. Thus, Gouraud shading

69

eliminates the optional metl;-od varying the color of an object by
using increasing number of flat shaded polygons.

Gouraud shading was used in the particle trace animation
software to display backgound images of color contours representing
variation in flow quantities. To generate a color contour, a color
ramp is first created in color map mode. A corresponding range is
also defined which relates the high and low values of the variable
under consideration to the far ends of the color ramp. Then, Gouraud
shaded polygons are drawn using the vertices of the CFD grid with
the color at each vertex defined in terms of the nodal value of the
variable under consideration.

In this work, background color contours were used to display
simulated attenuation from x-ray radiographs of a closed bath
combustion of liquid metal fuels. A numerical method based on x-
ray cross-sections and a multifluid CFD code was used to determine
the attenuation levels of the individual phase components at a
specific percent utilization. The attenuation calculations were then
used to generate background color contours for the animated particle
traces. Color contours were also used in this work to display the
variation of volume fractions of the particular phases in a multiphase

flow field.

Blending

Another higher level capability to enhance the performance of

color display involves the use of blending. By default, the pixel

70

colors of incoming objects: §imply replace the current pixel colors
where the object is to be drawn. However, to simulate reality it is
often desirable to replace the current color at the pixels with a color
that is a function of the incoming pixel color and the current pixel
color. Blending provides this capability by assigning a blending
factor alpha, between 0 and 255, to the bitplanes in addition to the
RGB components. Then a blending function may be written in terms
of the incoming alpha value to perform an alpha value comparison
which determines how to blend the RGB color components. Graphics
libraries usually provide a set of blending functions which
approximate various physical phenomena such as transparency and
material composition.

Blending was used in this work to animate particle traces for
multi-phase flows. A CFD data file for a multi-phase flow field
contains volume fraction information in addition to the velocity
components of the respective phases at the nodal locations. Using
_the respective velocity components, separate particle traces are
calculated for the different phases of a multiphase flow field and the
particle traces are distiguished by using different colors for the fluid
particles of each phase. Then, a transparency blending function is
based on the volume fraction data to scale the color intensity of a
fluid particle with respect to the relative amount of a phase present
at a particular location. Thus, a fluid particle for a phase has full
intensity if 100% of the phase is present and appears completely
transparent if no fraction of the phase is at the particle location. By
doing so, a flow field is developed with animated particles that

reflect the flow fields multiphase composition

71

Chapter 5: Applied Examples

Particle trace animations were generated for two case studies
of CFD flow fields. The "mint" flow field is a 2-D, steady state, single-
phase, recirculating flow field which models a clqsed bath
combustion process of a liquid metal fuel (Li). The mint CFD data file
was the sample data file used for developing the particle trace
calculation and animatibn software. The mint CFD data file contains
the nodal Cartesian coordinates of the CFD grid and the Cartesian
velocity components at the respective nodes. The "x-ray” flow field
is a 2-D, steady state, multi-phase, recirculating flow field which

models a closed bath combustion of a liquid metal fuel. [19] The

output data file for the x-ray flow field contains the nodal Cartesian-

coordinates of the grid, the Cartesian velocity components of three
separate phases, the volume fraction data of the phases, the density
of the phases, and the x-ray radiograph attenuation levels of the
phase mixture.

The particle trace animation software was written in FORTRAN
and a listing of the code for the first animated particle trace (Aptl)
using the mint flow field is given in Appendix B. The subroutines
which were modified for subsequent particle trace animations,
including the multiphase flow field, "x-ray", are given in Appendix C.
In addition, a video tape of all animated particle traces discussed in
this chapter is available through the library of the Applied Research
Laboratory in the Applied Science Building at University Park

campus, Penn State University.

71

Mint Flow Field

The mint flow field is a 2-D, steady state, single-phase,
recirculating model of a closed bath combustion of a liquid metal fuel.
The combustion vessel is symmetric with the injection of fuel and
oxidant along the centerline. The principle of symmetry was used in

1
the geometric modelling and the mint flow encompassed only 5 of

the combustor. In doing so, the injection of fuel and oxidant occurs
in the lower left corner of the flow field geometry. The placement of
the injector causes a jet of fluid across the bottom of the flow field
and particle trace animations reveal the entrainment of fluid into the
jet. This jet then results in the formation of a primary recirculation
zone of high velocity in the middle of the flow field and two
secondary recirculation zones of low velocity at the outer left and
right edges of the flow field.

The mint flow field was modelled computationally with a 46 x
24 quadrilateral, orthogonal grid which is .3556 m wide and 0.04445
m high. For the particle trace animation of the mint flow field, the
height of the reactor was scaled 2.5:1 with respect to the width. This
caused the mint reactor geometry to fill more space on the computer
screen and increased the flow field's perceived sensitivity in the
vertical direction. The time step interval for the particle trace
calculation mint flow field was established as dt = 7.347E-2 m/s
through trial and error to find the maximum dt such that the desired
level of accuracy was retained.

The mint flow field was primarily used for the development of

the particle trace calculation algorithm and animation software. The

72

time stepping and interpolation methods comparisons for the path
calculations (Chapter 3) were done using the mint flow field. Then,
the method to animate the particle traces (Chapter 4) was developed
for the mint flow field. The mint flow field was then used to
generate particle trace animations with differing means of inputting
the initial conditions of the particles.

Animated particle trace #1 (Aptl) supplies user input of initial
particle location through the mouse cursor and left mouse button. To
begin a particle trace, the user positions the mouse cursor in the
desired starting location and presses the left mouse button. This
initiates a particle trace and then adds the path information to the
set number of graphical objects. For Aptl, the number of graphical
. objects, nobj, was set at 75 to compromise between the wide
variation in total number of computed time steps (np < 20 in regions
of high velocxty within the inner recirculation zone and np > 1000 in
areas of low velocxty within the outer recirculation zones.

Apt2 queries input of initial particle location through a user
subroutine. The user supplies the number of initial particle locations
and the respective x and y coordinates (or i and j node identifiers).
The software first performs the particle trace calculations, storing
each trace in the graphical objects, then continuously cycles through
the graphical objects to animate the fluid particles. By initiating the
particle traces from within the source code, numerous traces may be
computed with relative ease and a "fully” developed flow field
picture may be obtained. Apt2 starts particle traces at numerous
locations distributed evenly throughout the flow field. This provides

insight into the global flow pattern. Due to the increasing complexity

73

of the graphical objects as. the number of particle traces increase, the
maximum number of time steps was limited to 300 and the number
of graphical objects was increased to 150.

Apt3 also starts the particle traces from within the source code.
Apt3 generates a dynamic timeline by starting a vertical column of
fluid particles in the center of the flow field. For the timeline, it was
desirable to have only a single particle traverse the particle path.
This was achieved by eliminating the recirculating flow and
stagnation stopping criteria, setting the number of time steps for
each particle trace to 100 and also setting the number of graphical
objects to 100. By doing so, each graphical object contained one fluid
particle for each separate particle trace.

Fof all animated particle traces with the mint flow field, color
map mode was used with writemasks so that the flow field
background (reactor walls and CFD grid) only required one draw into
both the frontbuffer and backbuffer. This saves considerable
computational time during the animation sequence, when computer
speed directly affects animation smoothness. The use of writemasks
in color map mode disables the background images from being
erased while éllowing the fluid particles, represented by the color
red (255,0,0), to visibly pass over the background image. Then,
when the fluid particles are erased for the next graphical object to be

drawn, the background images reappear.

74

X-ray Flow Field

The x-ray flow field is a 2-D, steady state, multi-phase,
recirculating CFD model of a closed bath combustion of a liquid metal
fuel (Li) at 60% utilization. The primary reason for the modelling of
the x-ray flow field is to produce a numerical visualization that can
be compared to an actual radiographic video sequence or picture.
The details of the actual reactor which the x-ray flow field models is
given in the JANNAF paper presented by Dr. Tim Miller of the
Applied Research Laboratory, Penn State University. [19] The size of
the reactor model is 1.095 m long by.337 m high. A pair of
staggered injection ports are placed on the left and right walls of the
reactor and impart a swirling momentum -to the reactor bath. The
combustor is also tilted 45° with respect to the horizontal.

The x-ray flow field was originally modelled as a full 3-D flow
field. However, for the particle trace animations, a 2-D model was
extracted from the 3-D solution by averaging all flow quantities
across the z cross-sections. This is valid because an actual
radiograph film or image is a spatial (z) averaged representation of a
multiphase flow field. The resulting nodal network was a 29 x 21
quadrilateral, orthogonal grid. The 2-D data file contains the nodal
values of velocity for three phases, fuel, product, and vapor, the
volume fractions of each phase, and the density of each phase. In
addition, x-ray radiographic attenuation data was generated using
Eqn. 2.3.

Figure 5.1 is a digitized image of an experimental x-ray

radiograph of a closed bath combustion at 60% utilization. Note that

75

the reactor is tilted 45° with respect to the horizontal. Thus, gravity
helps to pull the heavier product phase to the lower, right corner of
the reactor while allowing the lighter vapor phase to stratify at the
upper, left corner. This is shown on the x-ray radiograph by high
attenuation values (0.9) in the lower right corner and low
attenuation values (0.25) in the upper, right corner, because the
product is the most attenuating phase. As seen in the jagged and
somewhat chaotic contour lines of attenuation, the instantaneous x-
ray radiograph highlights the turbulent nature of the flow field.
Figure 5.2 is a contour plot of the numerically calculated x-ray
attenuation levels for the CFD flow field which models the closed
bath combustion at 60% utilization. [19] Again, the high attenuation
values occur in the lower, left corner of the reactor, indicating high
concentration of product phase, and the low values are located near
the top, indicating low concentration of product and higher
concentrations of vapor. However, the numerical x-ray radiograph
does not convey the highly turbulent image of the experimental x-
ray radiograph. The discrepancies between the two images is
because the experimental x-ray radiograph is an instantaneous
image at 60% utilization while the CFD code is based on a time

average of the closed bath combustion at 60% utilization.

76

Digitized x-ray radiograph of a closed bath combustor at 60% utilization

Fig. 5.1

PI3l mo[} Aei-x oy 10j S[9A9] uonenuope Kei-x pajenojeds A[[EdHAWNU JO SINOIUCD) TS Sy

Figure 5.3(a) is a color contour based on the same numerical
data set used for Figure 5.2. In Figure 5.5(a), blue (0,0,255) is scaled
to the highest possible attenuation level (1.0), green (0,255,0) is
scaled to the medium attenuation level (0.5), and red (255,0,0) is
scaled to no attenuation (0.0). Attenuation values between O and 0.5
interpolate color between red and green while attenuation values
between 0.5 and 1.0 interpolate color between green and blue.
Figure 5.3(a) compares well to Figure 5.4 and helps to further convey
the variation in attenuation levels through the use of false coloring.
However, when displaying contours using false coloring, knowledge
of the relationship between the color scale and the represented data
is essential.

Color contours were also used in this work to display the
variation of volume fraction data of a particular phase in a multi-
component flow field. Here, blue (0,0,255) is scaled to the maximum
volume fraction (1.0), green (0,255,0) is scaled to the mid volume
fraction (0.5), and red (255,0,0) is scaled to the minimum volume
fraction (0.0). For the 2-D x-ray flow field, Figure 5.3(b) displays the
variation in the volume fraction of the fuel species , Figure 5.3(c)
displays the variation in the volume fraction of the product species,
and Figure 5.?;(d) displays the variation in the volume fraction of the
vapor species. As seen in these Figures, the product (high density) is
concentrated near the bottom of the reactor, the vapor (low density)
is concentrated near the top of the reactor, and the fuel (mid density)

is primarily mixing near the center of the reactor.

79

uoroexy awnjoa rodea (p) uonoery swnoA jonpoxd (o) uonoeiy awINjOA [9nf (q) S[OAQ]

uonenuUaNe AvIi-x (®) :suolrjeuwiiue 2ovIl oponied Aei-x 10y soSewt punoidyoeq INOJUOD IO[O)) ¢'¢ 'S

T T T T A T

To convey the fluid motion of the x-ray flow field, numerous
particle traces were developed that highlight various aspects of the
multiphase nature of the x-ray flow field. Apt4 displays a gray scale
contour of the x-ray attenuation levels as a background and uses the
mixture velocity, a volume fraction average of the component
velocities, to calculate the particle traces. Apt4 uses solid red
particles and provides interactive user input of initial particle
location through the mouse. The number of graphical objects was set
at 75 while the maximum allowable number of time steps was set at
1000.

AptS displays a color contour of the x-ray attenuation levels
(Fig. 5.3(a)) as a background and also uses the mixture velocity to
calculate the particle traces. White (255,255,255) was chosen for the
particles because the background contour used a wide spectrum of
colors. A large number of particle traces are calculated for Apt5 by
initiating the particle traces from within the source code. Therefore,
the number of graphical objects was increased to 100 while the
maximum allowable number of time steps was reduced to 200 so
that the complexity of the graphical objects did not hinder smooth
animation. Apt6 is identical to AptS, except that the mixture density
is used to generate the background color contour. The striking
similarity between the two color contours highlights the relationship
between the density of a media and its x-ray attenuation levels.

The next series of animated particle traces convey information
of the particular phases in the multiphase flow field. Color contours
of variation in volume fraction data were used as the background

images (Figures 5.3(b)-(d)) and the mass velocity of respective

82

phases were used to calcul{até the particle traces. Apt7 displays the
color contour of variation in volume fraction for the fuel as a
background image and uses the fuel mass velocity to calculate the
particle traces. The fluid particles are represented as solid white and
the user interactively supplies the starting locations with the mouse.
Apt8 is identical to Apt7 except that the product phase is visualized
and Apt9 is similar except that the vapor phase is visualized. By
visualizing particle traces and color contours of volume fraction for
individual phases in a multiphase flow field, considerable insight is
gained into the relative amount of the phases present and the
relative effect of the phases in influencing the overall mixture
velocity.

The finai animated particle trace, Aptl0, of the x-ray flow field
computes separate particle traces for each phase present in the
multiphase flow field, distinguishes the fluid particles for each phase
with respective colors, and controls the intensity of the particle
colors with volume fraction data of the particular phases. For Aptl0,
the fuel is represented as green fluid particles, the product is
represented as blue fluid particles, and the vapor is represented as
red fluid particles. To control the intensity of the particle colors
requires the use of alpha value comparisons which are only available
in RGB mode. The background image for the animation sequence of
Aptl0 only consists of the reactor geometry and the CFD grid. The
starting information is supplied within the source code so that
numerous particle traces may be visualized. Using multiple phases
represented by different colors, provides excellent insight into the

multiphase nature of the x-ray flow field. Where little or no amount

83

of a phase exists, the respective fluid particles are nearly invisible
and where a large relative percentage of a phase exists, the

respective fluid particles are highly visible.

84

Chapter 6 - Conclusion

In this work, a CFD post processing technique was designed to
generate particle trace animations for 2-D, steady state, multiphase,
closed, recirculating flow fields. The first step was to develop a
suitable particle trace algorithm. Various time steppihg and
interploation methods were investigated and a Huen
predictor/corrector time stepping m“ethod combined with a Lagrange
shape function interpolation method was chosen for the particle path
calculations based on desired level of accuracy attained with low
computational cost. Also, a special stopping criteria for recirculating
flow fields was developed to help reduce the path spiralling and
overshoot which can occur when a fluid particle does not return to its
initial location. Computer graphics techniques, implemented on a
Silicon Graphics IRIS 4D GT workstation, were - next developed to
represent and animate the fluid particles along their calculated
paths. The fluid particles themselves were represented using B-
splines and the combined use of graphical objects with double
buffering enabled a computationally efficient particle trace
animation program to be developed which separates the path
calculations form the path animations and stores the calculated paths
in a pre-defined number of images rather than in a data base.
Capabilities were also developed to plot scalar contours of flow field
quantities as background images for the particle trace animations
and to scale the color of the fluid particles according to flow field

variables.

85

These techniques were then applied to a 2-D, steady state,
multiphase, closed, recirculating flow field which models a closed
bath combustion of a liquid metal fuel. Scalar contours of x-ray
attenuation levels were plotted for a multiphase flow field to
simulate x-ray radiographs of closed combustion of liquid metal
fuels. Volume fraction data of the phases was also used to plot
background color contours and to control the individual color

intensities of multiple color fluid particles representing the various

phases.

86

Appendix A

Linear Equation Solver

O
Appendix A I Linear equaTion solver
FILE: LE F Al (TTB104/P668U0 - Thursday, Apri! 30, 1992 = 3:10 pm) PAGE OC

L-U décompo sition with maximal ¢olymn Pi\/o‘fﬁh

subroutine le{a,n,x) o

input coefficient matrix a(n,n+1) which includes coeFF;clcrff' Mdﬁ'lX b

* ¥

double precision a(4,5),mi(4,4),x(4),2(4)
double precision maxpi,maxpi,HOLD,acopy

*

find first pivot element
»
npiz=n+1
nmi=n=1
maxp1=0.0
do 10 ii=1,n
if {abs(a(ii,1)).gt.abs(maxpt)) then
maxpl=a(ii,1)
fpi=il
endif
10 continue
if (abs(a(ipl1,1)).eq.0.0) then
print *,'no uniqule soln exists'
stop
endif

»

* interchange pivot row ipl and 1 in a
»
it (iptl.ne.1) then
do 25 JJ=1,npl
acopy=a(1,JJ)
a(1,JJ)=a(ip1,JJ)
a{lp1,]JJ)=acopy
25 contlnue
endif

defline flrst row of U and first column of L in a

*

mi(1,1)=1.0

a(1,1)=a(1,1)/mi(1,1)

do 30 jJ=2,n

a(1,JJ)=a(1,4J)/mi(1,1)

s8(JJ,1)=a(JJ,1)/a(1,1)

prlnt ')'3(1I'JJJ”) ='I’(1)JJ’

prlnt ."a('DJJD'l1) ='la(JJD1)
30 continue

do 4O ii=2,nm1

tipi=ii+l

fimi=il=1

»

* rind ith pivot
»
maxpi=0.0
do 50 JJ=ii,n
sum1=0.0
do 60 kk=1,iim1
sumi=sumi+a(Jj, kk)*a(kk, jJ)
60 continue

FILE: LE F Al (TTB104/P66840 ~ Thursday, April 30, 1992 = 3:10 pm)

print *, 'suml = ', sumi ,
If((abs(a(jj,11)-sumtl)).gt.maxpi) then
maxpi=abs(a(ii,JJ)=-suml)

tpi=jJ
endif
50 continue
print *, 'maxpi = ',maxpi
print *,"ipi = ',ipl

if {(maxpi.eq.0.0) then
print *,'no unique soin exists'
stop
endif
print *,'il ="', 11
If (ipl.ne.fi) then
»

* interchange rows Ipi and Il in both A and L
»

do 70 Jj=1,npl

acopy=a(il,JJ)

a(ii,JJ)=a(ipi,jJ)

a{ipi,JJ)=acopy

print *,'a(',11,',',JJ,") = ",a(l11,0J)
print *, 'a(',ipi,',"',JJ,") = ',a(lpl,JJ)
70 continue
end!f
»
® determine ith row of U and Ith column of L
mi(li,ii)=1.0
sum2=0.0
do 80 kk=1,1im1
sum2=sum2+a(i, kk)*a(kk, i)
80 continue
a(ti,t1)=(a(ii,11)=sum2)/mi(i1,11)
print *,'sum2 = ', sum2

print #, "a(', 11,",',11,"') = ', a(il,!Il)
do 90 JjJ=ilipi,n
sum3=0.0
sumi=0.0
do 100 kk=1,1im1
sum3=sum3+a(ii,kk)*a(kk,]JJ)
sumi=suml+a(jJ, kk)*a(kk, i)

100 continue
a(lii,JJ)=(a(il,jJ)=sum3)/mi(ti,il)
a(Jd, ii)=(a(JJ, 11)-sumd)/a(ii,il)

print *,'sum3 ="', sum3

print *, 'a(',11,',',J4J,") = ",a(il,JJ)
print *,'sum4 ="', sumy
pl‘“‘lt *1'8('1JJI'0'0lll') = 'DG(JJIII)

90 continue
40 continue

PAGE 00

FILE:

110

c

LE F Al (TTB104/P668U0 - Thursday, April 30, 1992 - 3:10 pm)

sum5=0.0

do 110 kk=1,nml
sum5=sum5+a(n, kk)*a(kk,n)
continue
HOLD=a(n,n)~sum5

print *,'sum5 ="', sum5
print *,'hold =',HOLD

if (HOLD.eq.0.0) then
print *,'no unique solution exists
stop

endif

¢ solve lower tri system Lz=b

»

130

120
c

mi(n,n)=1.0
a(n,n)=HOLD/m!(n,n)
z(1)=a(1,npt)/mi(1,1)

print *,'a(4,4) = ',a(n,n)
print *, '2(1) = ',z(1)

do 120 ii=2,n

iimi=ti=1

sum6=0.0

do 130 JJ=1,iiml
sumé=suméb+a(ii,JJ)*2(JJ)
continue
z(11)=(a(li,np1)=sum6)/mi(il,11)
print *,'sumé = ', sumé

print *,'29',11,") = ',z(i})
continue

¢ solve upper tri system Ux=2z

150

140

160

x(n)=z(n)/s(n,n)

do 140 fi=nmi,1,~1
ifpi=ii+1

sum7=0.0

do 150 Jj=iipti,n
sum7=sum7+a(ii,JJ)*x(JJ)
continue

print *,'sum7 =', sum?
x(11)=(z(it)-sum7)/a(li,il)
continue

do 160 ii=1,n

print *,'x(',il,') = tux(il)
continue

end

PAGE Q0

Appendix B

Source Code for Aptl

FILE: APTIMINT F Al (TTB10L4/P6684O - Monday, May 4, 1992 - 5:38 pm)

program aptl)
************************'H**

»

* Ted Blackmon,

GFW 4/15/92

Applied Researh Lab
penn State University

#*

* Animated particle traces for a 2-D, steady state, single phase,
recirculating flow in a closed combustor of a liquid meta! fuel

*

nx, ny
x{nx,ny)
y(nx,ny)
u(nx,ny)
v{nx,ny)
dt

maxp

np
px(maxp)
py(maxp)
pu

pv

xint
yint
nob |
iflag

* ¥ % % % % £ %X £ ¥ * £ ¥ £ € % ¥ ¥ ¥Xx * ¥ ¥ ¥ ¥ £ * £ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

-- Starting
mouse button

~-- Linear shape function velocity approximation

-- Huen predictor/corrector time stepping method

-- Background is the coordinate grid

location of particle input interactively through left

variable list:

2-D grid size (X,y)
x and y position data from CFD calculations

x and y velocity components from CFD calculations
computed time step size for path calculatians
maximum points allowed for a path

number of points calculated for a path

x and y positions of calculated points for a path

x and y velocity calculated for a points on the path

x and y starting position

number of graphical objects created
equals zero if xint,yint is a valid tocation

subroutines called:

*#*******t###*##*#*****************************

getdat - get data from CFD data flile
dtime - compute time step size
edges - compute edges of fliow field (max & min coordinates)
igraph = initialize graphics
defobj = define graphical objects (particle traces, backgrounds)
backgr = draw background images
heading - dispaly heading text
pinput -~ process input (starting location) from left mouse button
trace - calculate a particle trace
modobj =~ modify graphical objects by adding the particle trace
include "fgi.h"
include "fdevice.h"
integer nx,ny,np,maxp,nobj, ifiag

PAGE 00

FILE:

APTIMINT F Al (TTB104/P66840O - Monday,

parameter (nx=46,ny=24,maxp=1500,n0bj=75)
real x(nx,ny),y{(nx,ny),u{nx,ny),v{nx,ny)
real px(maxp),py(maxp),dt,xint,yint

call getdat(nx,ny,x,y,u,V)
call dtime(nx,ny,%x,y,u,v,dt)
call edges{nx,ny,X,¥Y)

call igraph

call defobj(nobj,nx,ny,x,y,u,Vv)
call backgr{nobj)

call headng{nx,ny,dt)

cal! qdevic(LEFTMO)

call greset

call writem(7)

do while (1)

begin animation loop

100

do white((qtest()).eq.0)
do 100 i = 1,nobj
call color(BLACK)
call clear
call cailob(1)
call swapbu
continue
end do

* calculate a particle trace

*

call pinput(xint,yint,iflag)
if (iflag.eq.0) then

May 4,

1992 - 5:38 pm)

call trace(nx,ny,x,y,u,v,xint,yint,px,py,maxp,np,dt,nflag)

if (nflag.eq.0) then
print *,'not added to graphical objects’

else
call modobj({nobj, px,py,maxp,np)
endif
endif
call greset
end do

end

subroutine getdat(nx,ny,Xx,y,u,V)

* input CFD position and velocity data

integer nx,ny,nx1,nyl
real x(nx,ny),y(nx,ny},u(nx,ny},v(nx,ny)

open{ 11, form="unformatted',file="mint.bin')
read{11) ny1,nx1
if (nxl.ne.nx.or.nyl.ne.ny) then

PAGE 00

FILE:

*

APTIMINT F Al (TTB104/P668LO - Monday, May 4, 1992 - 5:38 pm)

print *,'wrong grid size !’
stop
endif
read(11)((y(i,J),d=1,ny), i=1,nx)
read(11)((x(i,J),J=1,ny), i=1,nx)
read(11)((v(1,J),J=1,ny), 1=1,nx)
read(11)((u(i,J),J=1,ny), i=1,nx)

return
end

subroutine pinput(xint,yint,iflag)

process input (xint,yint) from queued device (left mouse button)

inctude "fgl.h"
include "fdevice.h"
include "fget.h"

integer sx,sy,iflag

integer |ft, rght,bttm,tp

real xint,yint,xmax,xmin,ymax,ymin

real xlow,xup,ylow,yup,xfact,yfact,dx,dy
common/bnd/xmax, xmin, ymax,ymin

iflag = 0
if ((qtest()).eq.LEFTMO) then

#+ read screen pixel coordinates and convert to world coordinates

sx = getval(MOUSEX)
sy = getval(MOUSEY)
dx = (xmax=xmin)
dy = (ymax-ymin)

xup = xmax + . 1*dx

xlow = xmin = ,1%dx

yup = ymax + .3*dy

ylow = ymin =dy -.3*dy

call getori(Ift,bttm)

calt getsiz(rght,tp)

rght = Ift + rght

tp = bttm + tp

xfact = (real(sx-lft))/(real(rght-lft))

yfact = (real(sy-bttm))/(real(tp-bttm))

xint = xlow + (xup-xlow)*xfact

yint = ylow + (yup-ylow)*yfact

If (xint.lt.xmin.or.xint.gt.xmax.or.

& ylnt.It.ymin.or.ylnt.gt.ymax) then

print #,' invalid cursor position
iftag = 1

endif

else
iflag = 1

PAGE 00

FILE: APTIMINT F Al (TTB104/P66840 - Monday, May 4, 1992 - 5:38 pm)
endif
return
end

*

»*

*

subroutine dtime(nx,ny,x,y,u,v,dt)

compute time step size as some multiple {dtmult) of the time required
#* for the fastest particle to cross its own CFD grid cell

integer nx,ny
real x(nx,ny),y(nx,ny),u(nx,ny),v(nx,ny),dt,dtmult

dtmult = 100
dt = 1.e+6
do 10 i = 2,nx-1
do 10 J = 2,ny=-1
dt amin1(dt,dtmult*(x(i+1,J)-x(I,J))/(abs(u(I,J))+1.e-10))
dt amin1(dt,dtmult*(y(l+1,J)-y(l,J))/(abs(v(i,J))+1.e-10))
10 continue

return
end

»

»

#*

subroutine edges(nx,ny,X,y)

compute the edges (max and min coordinates) of the flow field geometry

integer nx,ny
real x(nx,ny),y(nx,ny),xmax,xmin,ymax,ymin
common/bnd/xmax,xmin, ymax,ymin

xmin=x(1,1)

xmax=x(1,1)

ymin=y(1,1)

ymax=y(1,1)

do 70 i=1,nx

do 70 j=1i,ny
if (x(i,J).It.xmin) xmin=x(1,]J)
if (x(i,J).gt.xmax) xmax=x(1i,])
iIf (y(i,J).1t.ymin) ymin=y(i,J)
If (y(i,J).gt.ymin) ymax=y(1,J)
70 continue

return
end

#

*

*

subroutine igraph

PAGE 00

FILE: APTIMINT F Al (TTB104/P66840 - Monday, May 4, 1992 - 5:38 pm)

Initialize graphics window

inciude "fgl.h"
include "fdevice.h"

real xmax,xmin,ymax,ymin,dx,dy,xup,xlow,yup,ylow
common/bnd/xmax, xmin, ymax,ymin

dx (xmax=xmin)

dy (ymax-ymin)

xup = xmax + .1#dx

xlow = xmin = .1%*dx

yup = ymax + .3¥%dy

ylow = ymin =dy =-.3*dy

call foregr

call prefpo(0,640,0,512)

iwop = winope('Particle Trace',14)
call winpop

call concav(.true.)

call double

call gconfi

call ortho2{xlow,xup,yiow,yup)
call swapin(3)

return
end

»

*

»*

subroutine headng(nx,ny,dt)

dispiay heading (textual info, legends, etc..) for the animation window

F] include "fgt.h"
F] include "fdevice.h"

integer nx,ny,sX,sy

integer Ift,rght,bttm,tp

real xmax,xmin,ymax,ymin,dt
common/bnd/xmax,xmin,ymax,ymln

do 100 k = 1,8
call mapcol(655+k,100,100,100)

100 continue

dx = (xmax=xmin)

dy = (ymax-ymin)

xup = xmax + .1%*dx

xlow = xmin = . 1%dx

yup = ymax + . 3*dy

ylow = ymin =dy =.3*dy

call frontb(.true.)
call color(656)

xp = xmin

yp = ymin = .2%dy

PAGE 0

FILE: APTIMINT F Al (TTB104/P66840 - Monday, May 4, 1992 - 5:38 pm) PAGE 00

cal!l cmov2(xp,yp) .

call charst('Animated particle trace #1 ',u6)
yp = yp - (32./512.)%(yup - ylow)

call cmov2(xp,yp)

call charst{(' CFD data file: mint.bin ',46)
yp = yp - (24./512.)*(yup - ylow)

call cmov2(xp,yp)

call charst(' grid size: (46 , 24) ',u46)
yp = yp = (18./512.)*(yup - ylow)

call cmov2(xp,yp)

call charst(' (xmin,xmax): (0.0 , .3556) m ',46)
yp = yp = (18./512.)#*(yup - ylow)

call cmov2(xp,yp)

call charst(' (ymin,ymax): (0.0 , .04u4l45) m ',u6)
yp = yp - (18./512.)*(yup - ylow)

call cmov2(xp,yp)

call charst(' dt: .03673 m/s ',u6)
yp = yp - (24./512.)*(yup - ylow)

call cmov2(xp,yp)

call charst('To initiate a particle trace, place cursor ',146)
yp = yp - (18./512.)*(yup - ylow)

call cmov2(xp,yp)

call charst('in flow field, and press left mouse button. ',46)
call frontb(.false.)

return
end

*

subroutine defobj(nobj,nx,ny,x,y,u,v)

» define graphical objects #1 to #nobj for the particle path storage,
GRID for the grid, and REACT for the reactor boundries (where V = 0)

include "fgl.h"
include "fdevice.h"

integer nobj,GR!D,REACT, nx,ny
real x(nx,ny),y(nx,ny),u(nx,ny),v(nx,ny),vert(Z)

GRID = nobj+1
REACT = nobj+2

do 100 k = 1,8
call mapcol({639+k,10,10,10)
call mapcol(647+k,0,0,155)
100 continue
call mapcol(6u1,255,0,0)

do 150 j = 1,nobj
call makeob(J)
call color(RED)
call linewi(2)
call closeo(J)

FILE: APTIMINT F Al (TTB104/P66840 - Monday, May 4, 1992 - 5:38 pm)

150 continue

call makeob(GRiD)
call color{(640)
call linewi(1)
do 250 I = 1,nx
call bgnlin
do 200 J = 1,ny
vert(1) = x(1i,J)
vert(2) = y(i,J)
call v2f(vert)

200 continue
call endlin
250 continue

do 350 jJ = 1,ny
call bgnlin
do 300 i = 1,nx
vert(1) = x(i,J)
vert(2) = y(i,J)
call v2f(vert)

300 continue
call endlin
350 continue

call closeo(GRID)

call makeob(REACT)
call color(6u48)

call linewi(3)
do 400 J = 1,ny-1
do 400 | = 1,nx-1

flagl = 0

flag2 = 0

ftag3 = 0

flagh = O

flagt = 0

if (u(I,J).eq.o.o.and.v(I,J).eq.o.o) then
flagl = 1

endif

if (u(I+1,J).eq.0.0.snd.v(l+1,J).eq.0.0) then
flag2 = 1

endif

if (u(i,J+1).eq.0.0.and.v(I,J+1).eq.0.0) then
flag3d =1

endif

if (u(I+1,J+1).eq.0.0.and.v(i+1,J+1).eq.0.0) then
flagh = 1

endif

flagt = flagl+flag2+flag3+flagh
iIf (flagt.ge.2) then

* draw solid surface
if (flagt.eq.4) then

call bgnpol
vert(1) = x(i,J)

PAGE O

FILE: APTIMINT F Al (TTB104/P66840 - Monday, May U4, 1992 - 5:38 pm)

*

vert(2) = y(i,J)
call v2f(vert)
vert{(1) = x{(i+1,J)
vert(2) = y(i+1,])
call va2f{vert)
vert(1) = x{i+1,j+1)
vert(2) = y(i+1,j+1)
call v2f(vert)
vert(1) = x(i,J+1)
vert(2) = y(i,j*1)
call v2f(vert)
call endpol
endif

draw solid walls

if (flagl.eq.1.and.flag2.eq.1) then
call bgnlin
vert(1) = x(i,J)
vert(2) = y(i,J)
caltl v2f(vert)
vert{1) = x{(i+1,])
vert(2) = y(i+1,J)
call v2f(vert)
call endlin
endif
if (ftagl.eq.1.and.flag3.eq.1) then
call bgntin
vert(1) = x(i,J)
vert(2) = y(i,J)
call v2f(vert)
vert(1) = x(i,j+1)
vert(2) = y(i,j+1)
catl v2f(vert)
call endlin
endif
if (flagh.eq.1.and.flag2.eq.1) then
cali bgnlin
vert(1) = x(i+1,j+1)
vert(2) = y(i+1,j+1)
call va2f(vert)
vert(1) = x(i+1,])
vert(2) = y(i+1,])
call va2f(vert)
call endlin
endif
if (flagh.eq.1.and.flag3.eq.1) then
call bgntin
vert(1) = x(1+1,j+1)
vert(2) = y(i+1,j+1)
call v2f(vert)
vert{1) = x{(i,j+1)
vert(2) = y(I,J+1)
call v2f{vert)
call endlin

PAGE 00

FILE: APTIMINT F Al (TTB10O4/P6E6BLO = Monday, May 4, 1992 - 5:38 pm)
endif t
endif

LoO continue

call closeo(REACT)

return

end
*
*
*

subroutine backgr{nobj)

draw background images for the animation sequences only once

include "“fgl.h"
include "fdevice.h"

integer nobj,GR!D,REACT
real xmax,xmin,ymax,ymin
common/bnd/xmax, xmin, ymax,ymin

GRID = nobj+1

REACT = nobj+2

calt frontb(.true.)
call color(BLACK)
call clear

call callob(GRID)
call callob{REACT)
call frontb(.false.)

return
end

*

»

»

subrout ine modobj(nobj, px,py,maxp,np)

#* modify the graphical objects by adding the path recently defined

include "fg!.h"
include "fdevice.h"

integer nobj,maxp,np,bsplin
real px(maxp),py(maxp),xpt,ypt,geom(3,4)
real xmax,xmin,ymax,ymin,rad,mslx,aslx,tthr,bspmat(u,u)

common/bnd/xmax,xmin,ymax,ymin
parameter (bsplln=3,mslx=-1.0/6.0,aslx=1.0/6.0,tthr=2.0/3.0)

data bspmat/ msix, .5, =.5, asix,

+ .5, =1.0, .5, 0.0,

+ -.5, 0.0, .5, 0.0,

+ asix, tthr, asix, 0.0/
npm3 = np-3

call defbas(bsplin,bspmat)

PAGE O(

FILE: APTIMINT F Al (TTB104/P668UO - Monday, May 4, 1992 - 5:38 pm)

call curveb(bsplin)
* represent particies as B-splines through 4 consecutive time steps

* for a given path, draw particles every nobj time step
* and increment 1 timestep for every graphical object

do 100 i = 1,nobj
do 200 J = i,npm3,nobj

ic=0

do 300 k = J,j+3
fc = icHl
geom(1,ic) = px(k)
geom(2, ic) = py(k)
geom(3,ic) = 0.0

300 continue

call editob(i)
call crv(geom)
call closeo(i)
200 continue :

#* gliminate disappearing particies to avoid biinking during animation

if (i.gt.npm3) then
J = i=((i=1)/npm3)*npm3

fiec=0
do 400 k = j,j+3
ic = lc+1
geom(1,ic) = px{k)
geom(2, ic) = py(Kk)
geom(3,ic) = 0.0
300 continue

call editob(1i)
call crv(geom)
call closeo(i)
endif

100 continue

return

end
*
»
»

subroutine trace(nx,ny,x,y,u,v,xlnt,ylnt,px,py,maxp,np,dt,nrlag)
» *
» trace particle path from starting point (xint,yint) and store in px,py*
ysing a Huen predictor/corrector time stepping method and a Lagrange »
shape function (linear) *
» »*
#* variabie list: *
» *
xint,yint = starting location of particle trace *
* pXx, py - coordinates storing particle trace *

PAGE 00

FILE: APTIMINT F Al (TTB104/P66840 - Monday, May 4, 1992 = 5:38 pm) PAGE O1
* pu,pv - x,y components of particle vefocity at current location *
* pui,pvi - " " at intermediate location *
* dt - time step inetrval *
* maxp - maximum number of allowed time steps *
* np - total # of timesteps for a particle trace *
no - equals 0 until particle trace is complete *
* nstag - stagnation counter for stagnation stopping criteria *
* stot - total path length *
* ncross - crossing counter for recirculating flow stopping criteria *
* epsil - minimum !imit set on particle length *
* nflag - equals O if particle trace has insignificant length #
* *
Subroutines called: *
* *
* pvel - computes particle velocity from nodal velocities *
chkbnd - check boundary crossing flow *
pfin - check stopping criteria to determine if path is finished
* *

P rprgrpgeprgrgrgrgrgrgreE e s v 2 8 2 2 2 2 S 2 1 1 4
TR T E 2 2 2 2 0 3 L 2 Lk Sk bk AR A

integer np,nx,ny,maxp,no,nstag,ncross
real px(maxp),py(maxp),pu1,pv1,pu2,pv2,stot,a1,b1
real x(nx,ny),y(nx,ny),u(nx,ny),v(nx,ny),dt,epsil
common/ends/no,nstag,ncross,stoc,a1,b1

px{1) = xint

py(1) = yint

np = 1

no = 0

nstag = 0

stot = 0.0

ncross = 1

epsil = 1.e-6

nflag = 1

do while (no.eq.0)
np =np + 1

call pve!l{nx,ny,x,y,u,V,pX,py,maxp,pu,pv,np)
px(np) = px(np-1) + pu¥*dt
py(np) = py(np-1) + pv*dt
call ckbnd(px,py,maxp,np)

np = np+l
call pvel(nx,ny,X,Yy,u,V,pX,py,maxp,pui,pvi,np)
np = np-1

px(np) = px(np=1) + ((pu+pui)/2.0)*dt
py(np) = py(np=1) + ((pv+pvi)/2.0)*dt
call ckbnd(px,py,maxp,np)
cal!l pfin{px,py,maxp,np)

end do

if (stot.lt.epsil) nflag = 0

return
end

»

»

*

FILE: APTIMINT F Al (TTB104/P66840 - Monday, May 4, 1992 - 5:38 pm)

subroutine pvel(nx,ny,x,y,u,v,px,py,maxp,pu,pv,np)

* compute particle velocity from nodal velocities based on particle

jocation within the coordinate grid

»

#* pu,pv - X,y components of particle velocity

* md - node identifier If enclosed by four nodes {lower, left node)

* od - node identifier if on a node

» R

* Subroutines called:

*

* ploc = determine particle location with respect to nodal (i,j) indices
mvel - compute particle velocity using appropriate nodal interpolation
*

integer nx,ny,maxp,np,md,od
real px(maxp),py(maxp),pu,py
real x(nx,ny),y(nx,ny),u(nx,ny),v(nx,ny)

call pIoc(nx,ny,x,y,px,py,maxp,np,od,md)
if (od.ne.0) then

particie is on a node, set particle velocity to nodal velocity

ip = (od=1)/ny + 1
Jp = od = (ip-1)*ny
pu = u(ip,Jjp)

pv = v(ip,Jp)

else if (md.ne.0) then

* particle between four nodes, interploate particle velocity

call mvel(nx,ny,x,y,u,Vde,DX.py.mBXp,np,DU.pV)

else
print *,'particle out of grid’
stop
endif
return
end
»
»
»

subroutine ploc(nx,ny,x,y,px,py,maXp,np,od,md)
determine particle location (between nodes or on a node)

md - node identifier if enclosed by four nodes (lower, ieft node)
od - node identifier If on a node

integer nx,ny,maxp,np,md,od
real x(nx,ny),y(nx,ny),px(maxp),py(maxp)

od (o}
md =0

PAGE 00

FILE: APTIMINT F Al (TTB104/P66840 - Monday, May 4, 1992 - 5:38 pm)

do 40 i=1,nx-1
do 40 Jj=1,ny-1
if (px(np-1).ge.x(I,J).and.px(np-1).le.x(l+1,J).

& and.py(np-1).ge.y(I,J).and.py(np-1).le.y(l,J+1)) then

40

50
25

*

* Lagrange shape function (!inear) interploation of particles velocity

»

md=(i-1)#ny + j

goto 25
endif
continue
do 50 i=1,nx
do 50 j=1,ny
If (px(np-1).eq.x(i,j).and.py(np=1).eq.y(i,J)) then
od = (i-1)*ny + j
goto 25
endif
continue
continue
return
end

subroutine mvel(nx,ny,x,y,u,v,md,px,py,maxp,np,pu,pv)

* yariables:

»

xc,yc - X,y center of grid cell which encioses the particle

* b,a

- 1/2 of the width and heigth of the grid cell

* xx,yy - x,y displacement of particie from center of grid cetl
c1,c2 - coordinates of particle in natural coordinate system
g(4) = Lagrange shape functions

integer nx,ny,maxp,np,md

real x(nx,ny),y(nx,ny),u(nx,ny},v(nx,ny)
real px(maxp),py(maxp),pu,pv

real xc,yc,xX,yy,b,a,c1,c2,e(l)

= (md=1)/ny + 1

J=md = (i=1)*ny
xc = (x{i+1,]J) + x(i,J))/2.0
ye = (y(i,j+1) + y(i,Jj))/2.0

b = (x(i+1,J) - x(1,]J))/2.0
a = (y(i,J+1) - y(i,4))/2.0

xx = px{np-1) - xc

yy = py{np-1) - yc

c1 = xx/b

c2 = yy/a

e(1) = .25%(1-c1)#*(1-c2)
e{(2) = .25%(1+c1)*(1-c2)
e(3) = .25%(1+c1)*(1+c2)

e(l) .25%(1=c1)*(1+c2)

PAGE O«

FILE: APTIMINT F Al (TTB104/P66840 -~ Monday, May 4, 1992 - 5:38 pm)

pu=e(1)*u(I,J)+e(2)*u(i+1,J)+e(3)*uii+1,J+1)+e(u)*u(i,J+1)
pv=e(1)#v(i, J)+e(2)*v(i+1,])+a(3)*v(I+1,J+1)+e(4)*v(1,J*1)

return
end

»*

»

»

subroutine ckbnd(px,py,maxp,np)
* check that particle does not cross grid boundry

integer maxp,np
common/bnd/xmax,xmin,ymax,ymin
real px(maxp),py{maxp)

iIf (px(np).1t.xmin) then
px(np) = (px(np=1) = xmin)/2.0
endif
if (px(np).gt.xmax) then
px(np) = px(np=-1) + (xmax - px(np=1))/2.0
endif
if (py(np).!t.ymin) then
py(np) = (py(np-1) - ymin)/2.0
endif
if (py(np).gt.ymax) then
py(np) = py(np=1) + (ymax - py(np-1))/2.0

endif
return
end
»
»
»
subroutine pfin(px,py,maxp,np)
determine when particie path is finished, no = 1 when complete
integer maxp,np,no,nstag,ncross
real px{maxp),py(maxp),s,stot
real a,b,al,bl,det(s),xl,yl,xlow,ylow,xhl,yhl
character*25 end
common/ends/no,nstag,ncross, stot,al, bl
* Stopping criteria: particle stagnation
* if particle takes excessive number of insignificant
* timesteps, then end path calculation
* s - length of current timestep
stot =~ total path length
gpsil - insignificant timestep
pnstag - stagnation counter

PAGE 00

FILE:

-

*

* %

$ % ® % ¥ X & ¥ ¥

APTIMINT F Al (TTB104/P66840 - Monday, May 4, 1992 - 5:38 pm)

s = (px(np)-px(np=-1))**2 + (py(np)=-py(np=1))**2
s = sqrt(s)
stot = stot+s
epsil = 1.e-10
if (s.1t.epsil) then
nstag = nstag + 1
if (nstag.eq.50) then

end = 'particle stagnated'
print 10,end,px{(1),py(1),stot,np
no = 1
goto 25
endif
endif

Stopping criteria: maximum particle limit

if (np.eq.maxp) then

end = 'max particle limit'
print 10,end,px{1),py(1),stot,np
no = 1
goto 25
endif

Stopping criteria: recirculating f | ow

if particle path crosses tine perpindular to first time step
more than twice, then flow has recirculated

al - slope of tine 1, perpindicular to first time step

b1 - y-intercept of line 1, perpindicular to first time step
a - slope of line segment |, for current time step

b - y-intercept of line segment i, for current time step
x!,y! - intersection of line 1 and line |

xhi,yhi - box enclosing iine segment i

xlow,ylow

det() - determinants computed for Cramer's rule

ncross =- crossing counter determined by tine intersections

if (np.eq.2) then
at=(px(1)=-px(2))/{py(2)-py(1))
bi=py(1)-px(1)*al

no =0
goto 25
endif

a=(py(np)=py(np-1))/(px(np)=px(np=1))
b=py(np=1)=-px(np=1)*a
det(1) = a1l -~ a
if (det(1).ne.0.0) then
det{(2) = al*b - a*bi
det(3) = b - b1
yl det(2)/det(1)
x| det(3)/det{1)
xlow = aminti(px(np),px(np=1))
ylow = amini(py(np),py(np=1))
xhi = amax1(px{(np),px{np-1))

PAGE Ot

FILE: APTIMINT F Al (TTB104/P66840 - Monday, May 4, 1992 - 5:38 pm) PAGE 00

yhi = amax1(py(np),py(np-1})
if (xl.ge.xlow.and.x!.le.xhi.and.
& yl.ge.ylow.and.yl.le.yhi) then
ncross = ncross + 1
if (ncross.eq.3) then

no = 1
np =np - 1
end = 'path closed’
c print 10,end,px(1),py(1),stot,n
nflag = 1 .
endif
else
no=20
endif
else
no =0
endif

25 continue

10 format(1x,820,3(f6.4,2x),i6)
return
end

Appendix C

Modified Subroutines for other Apt's

FILE: APT2MINT F Al (TTB104/P668U0 - Monday, May 4, 1992 = 5:45 pm) PAGE 0C

program apt2 .
#***********#**************#***************#***#*************#*******

Ted Blackmon, GFW 4/15/92
Applied Researh Lab
Penn State University

Animated particle trace for a 2-D, steady state, single phase,
recirculating flow in a ctosed combustor of a liquid meta! fuel

-- Starting location of particles through input deck in program;
starting locations evenly distributed throughout flow field

-- Linear shape function velocity approximation

-- Huen predictor/corrector time stepping method

-- Background is the coordinate grid

variable list:

nx, ny - 2-D grid size (Xx,Y)
x(nx,ny) - x and y position data from CFD calculations

y(nx,ny) =
u(nx,ny) - x and y velocity components from CFD calculations

vinx,ny) =

dt - computed time step size for path calculations
maxp - maximum points allowed for a path

np - number of points calculated for a path

px(maxp) = x and y positions of calculated points for a path
py(maxp) -

pu - x and y velocity calculated for a points on the path
pv =

xint - x and y starting position

yint -

nobj - number of graphical objects created

iflag - equals zero if xint,yint is a valid location

subroutines called:

getdat = get data from CFD data file

dtime - compute time step size

edges - compute edges of flow field (max & min coordinates)
igraph = initialize graphics

defobj = define graphical objects (particle traces, backgrounds)
backgr = draw background images

heading - dispaiy heading text

pinput = process input (starting location) from left mouse button
trace - calculate a particle trace

*
#
»*
*
*
*
*
#*
*
*
*
*
*
*
*
*
*
*
»
*
*
*
*
»*
*
»
»
»
»
*
*
»
»
»
»*
»
»
*
*
»*
»*
»*
*
*
L]
modobj = modify graphical objects by adding the particle trace *
»

t#**t"t**#*#tt*##ﬁ‘t‘ttt‘#***##t#tt**t*#*ttt**

2 58 A 3k 30 3b b 36 36 30 46 36 36 3 3 36 MWW Sk kAL 2K 30 b 38 46 45 48 46 30 36 36 36 36 3 46 6 H A6 M N HHH
praverere TR T L 2 2 8 8 0 A a e b AR AR

inciude "fgi.h"
¥ include "fdevice.h"

integer nx,ny,np,maxp,nobj, iflag

FILE: APT2MINT F Al (TTB104/P6684O - Monday, May 4, 1992 - 5:45 pm)

parameter (nx=46,ny=24,maxp=200,nobj=100)
real x(nx,ny),y(nx,ny),u(nx,ny),v{nx,ny)
real px(maxp),py(maxp),dt,xint,yint

real xmax,xmin,ymax,ymin

common/bnd/xmax, xmin,ymax,ymin

call getdat(nx,ny,x,¥y,u,V)

cat! dtime(nx,ny,x,y,u,v,dt)
call edges(nx,ny,X,y)

call igraph

cal! defobj(nobj,nx,ny,%,y,u,Vv)
call backgr(nobj)

call headng(nx,ny,dt)

calculate particle traces

ntrace = 0
dy = (ymax-ymin)/10
dx = {xmax-xmin)/50
do 25 xint = xmin+dx,xmax=dx,dx
do 50 yint = ymin+dy,ymax-dy,dy
call trace(nx,ny,x,y,u,v,xlnt,ylnt,px,py,maxp,np,dt,nflag)
if (nflag.eq.0) then
print *,'not added to graphical objects'’
nflag = nflag
else
ntrace = ntrace + 1
call modobj(nobj,px,py,maxp,np)
endif
50 continue
25 continue

* animation loop

call writem(7)
do while (1)
do 100 | = 1,nobj
call color({BLACK)
call clear
cali callob(i)
call swapbu
100 continue
end do
call qreset

end

*

subroutine headng(nx,ny,dt)
* display heading and message to start new particle trace

include "fgl.h"
include "fdevice.h"

PAGE 00

FILE: APT2MINT F Al (TTB104/P66840 -~ Monday, May 4, 1992 = 5:45 pm) PAGE 0

integer nx,ny
real xmax,xmin,ymax,ymin,dt
common/bnd/xmax,xmin,ymax,ymin

do 100 k = 1,8
call mapcol(655+k, 100,100,100)

100 continue

dx = (xmax=xmin)

dy = (ymax-ymin)

xXup = xmax + ,1#dx

xiow = xmin = , 1*dx

yup = ymax + .3*dy

ylow = ymin -dy -.3*dy

call frontb(.true.)

call color{656)

Xp = Xmin

yp = ymin - ,2%dy

cal!l cmov2(xp,yp)

call charst('Animated particle trace #3 ',46)
yp = yp = (32./512.)%(yup - ylow)

call cmov2(xp,yp)

call charst(' CFD data file: mint.bin ',u6)
yp = yp - (24./512.)*(yup ~ ylow)

call cmov2(xp,yp)

call charst(’ grid size: (46 , 24) ',u6)
yp = yp = (18./512.)*(yup = yiow)

call cmov2(xp,yp)

call charst(' (xmin,xmax): (0.0 , .3556) m ',U46)
yp = yp - (18./512.)*(yup = ylow)

call cmov2(xp,yp)

call charst(' (ymin,ymax): (0.0 , .04L45) m ',46)
yp = yp — (18./512.)%(yup - ylow)

call cmov2(xp,yp)

call charst{' dt: .007347 m/s ',46)
yp = yp = (24./512.)*(yup = ylow)

call cmov2(xp,yp)

call charst('Numerous particle traces initiated within source',u49)
yp = yp - (18./512.)*(yup - ylow)

call cmov2(xp,yp)

cai! charst('source code. Total § of particle traces: 508 ',u6)

cal!l frontb(.false.)

return
end

*

FILE: APT3MINT F Al (TTB104/P668L0O - Monday, May U4, 1992 - 5:49 pm) PAGE 00

program apt3 i
*%*****#***

*

Ted Blackmon, GFW 4/15/92
* Applied Researh Lab

Penn State University

*

#* Animated particle trace for a 2-D, steady state, single phase,

#* recirculating flow in a closed combustor of a liquid metal fuel
*

-- Starting location of particies through input deck within source
code

-- 98 particle traces for an initial column of starting locations
to produce a timeline

-- Linear shape function velocity approximation

-- Huen predictor/corrector time stepping method

-- Background is the coordinate grid

variabie list:

nx, ny - 2-D grid size (Xx,Y)

x{nx,ny) - x and y position data from CFD calculations
y(nx,ny) =

u(nx,ny) = x and y velocity components from CFD calculations
v(nx,ny) -

dt - computed time step size for path calculations
maxp - maximum points allowed for a path

np - number of points calculated for a path

px(maxp) = x and y positions of calculated points for a path
py(maxp) =

pu - x and y velocity calculated for a points on the path
pv =

xint - x and y starting position

yint -

nobj - number of graphical objects created

iflag - equals zero If xint,yint is a valid location

subroutines called:

getdat =~ get data from CFD data file

dtime - compute time step size

edges - compute edges of flow field (max & min coordinates)
igraph =~ initialize graphics

defobj = define graphical objects (particle traces, backgrounds)
backgr = draw background images

heading - disp‘ﬂy heading text

trace - calculate a particle trace

modobj = modify graphicai objects by adding the particle trace

*##****#****t***####***tt**t**t*****************

£ £ % * % ¥ ¥ % % ¥ % % ¥ ¥ ¥ ¥ % ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ % % £ ¥ ¥ ¥ ¥ ¥ * ¥ ¥ ¥

it r ak 2k 2k AL AL 26 30 36 50 36 30 3k 35 36 36 36 36 36 3 36 36 36 36 36 36 3 3 3 H 0 HE 6 3 4 3 03030 A0 2N
HHHRRRHRERAEEREREETRAREIRTRR HHRRHRERRRERER R TS *HHn

include "fgl.h"
inciude "fdevice.h"

FILE: APT5X F Al (TTB104/P66840 - Monday, May 4, 1992 = 6:00 pm) PAGE O

program apt5
***********************%**-IH(—*************#*****************%*************

*
Ted Blackmon, GFW ' b/15/92
Applied Researh Lab

Penn State University
»

Animated particle trace for a 2-D, steady state, multiphase,
recirculating flow in a closed combustor of a liquid metal fuel
*

-- Starting location of particles input within source code

-- Linear shape function velocity approximation

-- Huen predictor/corrector time stepping method

-~ Mixture velocity of the three phases to push particles

-- Background is false coloring of numerical x-ray attenuation

variable list:

nx, ny = 2-D grid size (x,Y)
x(nx,ny) - x and y position data from CFD calculations

y(nx,ny} -

u{nx,ny) - x and y velocity components from CFD calculations
vinx,ny) =

den - mixture density

gray - numerical x-ray attenuation levels

dt - computed time step size for path calculations
maxp - maximum points allowed for a path

np - number of points calculated for a path

px{maxp) - x and y positions of calculated points for a path
py(maxp) =

pu - x and y veloclity calculated for a points on the path
PV =

xint - x and y starting position

yint -

nobj - number of graphical objects created

iflag - equais zero if xint,yint is a valid location

subroutines called:

getdat - get data from CFD data file
dtime - compute time step size

#t**####**‘#‘*'**#******t***********#*****

edges - compute edges of flow field (max & min coordinates)
igraph = initialize graphics

defobj =~ define graphical objects (particle traces, backgrounds)
backgr = draw background images

headng - dlspJQy heading text

trace - calculate a particle trace

modobj - modify graphical objects by adding the particle trace

¥ ® ¥ % % % ¥ % ¥ ¥ ¥ ¥ ¥ % ¥ F ¥ ¥ *

AL 38 35 35 30 30 36 36 3b 36 36 36 46 36 4 3 36 b 3 1 W BN Frn
HHHHERERRARERERTFRTTTTRRRTTT

*
*
%
9
9
E
E
3
E
E
E

include "fgl.h"
include "fdevice.h"

[

FILE: APT5X F Al (TTB10O4/P66840 - Monday, May 4, 1992 - 6:00 pm)

integer nx,ny,np,maxp,nobj, iflag

parameter {(nx=29,ny=21,maxp=200,nobj=100)

real x(nx,ny),y(nx,ny),u(nx,ny),v(nx,ny),den(nx,ny),gray(nx,ny)
real px(maxp),py(maxp),dt,xint,yint

real xmax,xmin,ymax,ymin

common/bnd/xmax,xmin,ymax,ymin

call getdat(nx,ny,X,y,u,v,den,gray)
call dtime(nx,ny,x,y,u,v,dt)

call edges(nx,ny,X,y)

call igraph

call defobj(nobj,nx,ny,x,y,u,v,gray)
call dinit(nobj)

call headng(nx,ny,dt)

cafculate particle traces

ntrace = 0
dy = (ymax-ymin)/15
dx = (xmax-xmin)/25
do 25 xint = xmin+dx,xmax=-dx,dx
do 50 yint = ymin+dy, ymax-dy,dy
call trace(nx,ny,X,y,u,v,xint,yint,px,py,maxp,np,dt,nflag)
if (nflag.eq.0) then
print *,'not added to graphical objects'
nflag = nflag
else
ntrace = ntrace + 1
call modobj(naobj, px,py,maxp,np)
endif
50 continue
25 continue

* begin animation loop

do 75 k = 1,256
call mapcol(257+2*%k,255,255,255)
75 continue
call mapcol(1,255,255,255)
call writem(1)
do while (1)
do 100 i = 1,nobj
call color(BLACK)
call clear
call callob(i)
call swapbu
100 continue
end do
call qreset

end

*

subroutine getdat(nx,ny,X,y,u,v,den,gray)

PAGE 00

FILE: APT5X F Al (TTB104/P66840 - Monday, May U, 1992 - 6:00 pm)

|nput CFD position and velocity data

integer nx,ny,ni,nj
real x(nx,ny),y(nx,ny),u(nx,ny),v{nx,ny)
real den(nx,ny),gray(nx,ny),fsmach,alpha,re,time

call copen(12,'u2dxray.bin','r',istat)
call copen(14,'x2dxray.bin','r', istat)

call cread(12,4,nl,istat)
call cread(12,4,nj,istat)
print *,'ni =',ni
print *,'nj =',nj
if (ni.ne.nx.or.nj.ne.ny) then
print *,'wrong grid size 1’
stop
endif
call cread(12,4, fsmach, istat)
call cread(12,4,aipha, istat)
call cread(12,4,re, istat)
call cread(12,4,time, istat)
do 10 j = 1,ny
do 10 | = 1,nx
call cread(12,4,den(i,j),istat)
10 continue
do 20 j = 1,ny
do 20 | = 1,nx
call cread(12,4,u(i,J),istat)
20 continue
do 30 J = 1,ny
do 30 i = 1,nx
call cread(12,4,v(i,J), istat)
30 continue
do 40 j = 1,ny
do 40 I = 1,nx
call cread(12,4,gray(i,J), istat)
4o continue
call cread(14,4,ni,Iistat)
call cread(14,4,nj,istat)
if (ni.ne.nx.or.nj.ne.ny) then
print *,'wrong grid size t'
stop
endif
cal!l cread(14,4, fsmach, istat)
call cread(14,4,alpha, istat)
call cread(14,4,re,istat)
call cread(14,4,time, istat)
do 50 j = 1,ny
do 50 i = 1,nx
call cread(14,4,x(i,j),istat)
50 continue
do 60 j = 1,ny
do 60 i = 1,nx
caill cread(14,u4,y(1,J),istat)

* % * *

PAGE O

FILE:

60

*

APT5X F Al (TTB104/P66840 - Monday, May 4, 1992 = 6:00 pm)

continue

return
end

subroutine headng(nx,ny,dt)

* display heading and message to start new particle trace

inctude "fgl.h"
include "fdevice.h"

integer nx,ny,sx, sy
real xmax,xmin,ymax,ymin,dt,vert(2)
common/bnd/xmax, xmin,ymax,ymin

call mapcol(770,125,125,125)
call mapcol(771,125,125,125)

dx {xmax=xmin)

dy (ymax-ymin)

Xup = xmax + ,1#dx
xlow = xmin = ,1%*dx
yup = ymax + ,35*dy
ylow = ymin =dy =,3*dy

call frontb(.true.)

call coilor{(770)

xXp = xmin

yp = ymin = ,2%dy

call cmov2(xp,yp)

ca!l charst('Animated particle trace #5 ',u6)
yp = yp - (32./512.)%(yup - ylow)

call cmov2(xp,yp)

call charst(' CFD data flle: x2dxray.bin ',46)
yp = yp - (24./512.)%(yup = ylow)

call cmov2{xp,yp)

call charst(' grid size: (29 , 23) ',u6)
yp = yp - (18./512.)*%(yup - ylow)

call cmov2(Xp,yp)

call charst(' (xmin,xmax): (0.0 , 1.049) m ',u6)
yp = yp - (18./512.)%(yup - ylow)

call! cmov2(xp,yp)

catl charst(' (ymin,ymax): (0.0 , .3937) m ',u46)
yp = yp - (18./512.)*(yup - ylow)

call cmov2(xp,yp) .

call charst(’ dt: 4.70e-4 m/s ',46)
yp = yp - (24./512.)%(yup - ylow)

call cmov2{xp,yp)

call charst{'Uses mixture velocity for particle traces ',Lu6)
yp = yp - (18./512.)%(yup - ylow)

cal!l cmov2(xp,yp)

cal! charst('Background: false coloring of x-ray attenuation',u47)

PAGE 00

FILE: APTS5X F Al (TTB104/P66840 -~ Monday, May 4, 1992 - 6:00 pm)

yp = yp = (24./512.)*(yup - ylow)

call cmov2(xp,yp)

call charst('Particle traces Initiated through input deck ',46)
yp = yp - (18./512.)%(yup = ylow)

call cmov2(xp,yp)

call charst('within source code. Total # particle traces: 504',48)

draw gravitationa! vector

call bgniin
vert{(1) = xmax = .05%*dx
vert(2) = ymin = .1*dy
call va2f(vert)
vert(1) = xmax
vert(2) = ymin - ,1%dy - .05%*dx
call v2f(vert)
vert(1) = xmax
vert(2) = ymin = .1%dy - .03%dx
call v2f(vert)

call endlin

call bgnlin
vert(1) = xmax
vert(2) = ymin - .1%dy = .05%dx
call v2f(vert)
vert(1) = xmax = .02%dx
vert(2) = ymin = .1*dy = .05%dx
call va2f(vert)

call endlin

Xp = Xmax

yp = ymin = .1#*dy

cali cmov2(xp,yp)

call charst('g',1)

draw coilor scale legend

xp = xmax = .15%dx

yp = ymin - .2*%dy = .09*dx
call cmov2(xp,yp)

call charst{'Attenuation',11)

xp = xmax = .1%dx

yp = yp - (18./512.)%(yup - ylow)
nscale = 258 + nint(1.0*511.0)
call color{nscale)

call cmov2(xp,yp)

call charst('1.00',4)

yp = yp - (12./512.)*(yup - ylow)
nscale = 258 + nint(.90*511.0)
call color(nscale)

call cmov2(xp,yp)

call charst('0.90',4)

yp = yp - (12./512.)*(yup - ylow)
nscale = 258 + nint(.80%511.0)

PAGE €

FiLE: APT5X F Al (TTB104/P668U0 - Monday, May 4, 1992 - 6:00 pm)

call color(nscale)
call cmov2(xp,yp)
call charst('0.80',4)

yp = yp - (12./512.)*(yup - ylow)
nscale = 258 + nint(.70%*511.0)
call color(nscale)

cal!l cmov2(xp,yp)

call charst('0.70',4)

yp = yp = (12./512.)%(yup ~ ylow)
nscale = 258 + nint(.60%511.0)
call color(nscale)

call cmov2{xp,yp)

call charst{'0.60',4)

yp = yp - (12./512.)%(yup = ylow)
nscale = 258 + nint(.50%*511.0)
call color(nscale)

call cmov2(xp,yp)

call charst('0.50',4)

yp = yp - (12./512.)%(yup - ylow)
nscale = 258 + nint(.40%*511.0)
call color(nscale)

call cmov2(xp,yp)

call charst('0.40',4)

yp = yp - (12./512.)%(yup - ylow)
nscale = 258 + nint{.30%*511.0)
cal! color(nscale)

call cmov2(xp,yp)

call charst('0.30',4)

yp = yp = (12./512.)*(yup - ylow)
nscale = 258 + nint(.20*511.0)
call coilor(nscale)

call cmov2(xp,yp)

call charst('0.20',4)

yp = yp - (12./512.)%(yup = ylow)
nscate = 258 + nint(.10%511.0)
call color(nscale)

call cmov2(xp,yp)

call charst('0.10',4)

yp = yp - (12./512.)*(yup = ylow)
nscale = 258 + nint{.0*511,0)
call color(nscale)

call cmov2(xp,yp)

call charst('0.00',4)

call frontb(.false.)

return

PAGE 00

FILE: APT5X F Al (TTB104/P66840 - Monday, May 4, 1992 - 6:00 pm)

end

subroutine defobJ(nobJ,nx,ny,x,y,u,v,gray)

define graphical objects #1 to #nobj for the paths,
GRID for the grid, and REACT for the reactor boundries
and ATTEN for the color contour of X-ray attenuation data

inctude "fgl.h"
include "fdevice.h"

integer nobJ, GRID, REACT,ATTEN, nX, ny
real x(nx,ny),y(nx,ny),u(nx,ny),v(nx,ny),gray(nx,ny)
real vert{(2)

GRID = nobj+1i
REACT = nobj+2
ATTEN = nobj+3

do 100 k = 1,2
call mapco!{255+k,255,0,255)
100 continue
do 125 k = 1,128
call mapcol(257+2%*k-1,256-2%k,2%k-1,0)
call mapcol(257+2*k,256-2*k,2*k-1,0)
call mapcol(513+2*k“1,0,256‘2*k,2*k-1)
call mapcol(513+2*k,0,256-2*k,2*k-1)
125 continue

do 150 jJ = 1,nobj
call makeob(])
call color(1)
call linewi(2)
call closeo(])
150 continue

call makeob(GRIiD}
call cotor(6u0)
call linewi(1)
do 250 | = 1,nx
call bgniin
do 200 j = 1,ny
vert(1) x{(i,J)
vert(2) = y(1,J)
call v2f(vert)

200 continue
call endlin
250 continue

do 350 j = 1,ny
call bgnlin
do 300 i = 1,nx
vert(1) = x(i,J)
vert(2) = y(i,J)

PAGE O

FILE: APTS5X F Al

call v2f{vert)

300 cont inue
call endlin
350 continue

call closeo(GRID)

call makeob(REACT)
call color(256)

(TTB104/P66840O - Monday, May U4,

if (u(i,j).eq.0.0.and.v(i,j).eq.0.0) then

if (u(i+1,J).eq.0.0.and.v(i+1,j).eq.0.0) then

if (u(i,j+1).eq.0.0.and.v(i,J+1).eq.0.0) then

if (u(i+1,j+1).eq.0.0.and.v(i+1,j+1).eq.0.0) then

call tinewi(3)
do 400 j = 1,ny-1
do 400 i = 1,nx=1
flagl = 0
flag2 = 0
flag3 = 0
flagh = 0
flagt = 0
flagl = 1
endif
flag2 = 1
endif
flagd = 1
endif
flagh = 1
endif

flagt = flagl+flag2+flag3+flagl
iIf (flagt.ge.2) then

*

* draw solid surface

»

if (flagt.eq.4) then
call bgnpol
vert(1) = x(1i,J)
vert(2) = y(i,J)
call v2f(vert)
vert(1) = x(i+1,]J)
vert(2) = y(i+1,]J)
call v2f(vert)
vert(1) = x(i+1,J+1)
vert(2) = y(i+1,j+1)
call v2f(vert)
vert{(1) = x(i,J+1)
vert(2) = y(i,J+1)
call v2f(vert)
call endpol
endif
»
* draw solid walls

if (flagl.eq.1.and.flag2.eq.1) then

call bgnlin

vert(1) = x(1i,J)

1992 - 6:00 pm)

PAGE 00

FILE: APT5X

F Al (TTB10/P66BUO - Monday, May 4, 1992 - 6:00 pm)

vert(2) = y(i,J)
call va2f(vert)
vert(1) = x(i+1,])
vert(2) = y(i+1,]J)
call va2f(vert)
call end!lin
endif
if (flagl.eq.1.and.flag3.eq.1) then
call bgnlin
vert(1) = x(1,J)
vert(2) = y(i,J)
call v2f(vert)
vert(1) = x(i,J+1)
vert(2) = y(i,j+1)
call va2f(vert)
call endlin
endif
if (flagh.eq.1.and.flag2.eq.1) then
call bgniin
vert(1) = x(i+1,j+1)
vert(2) = yl{i+1,Jj+1)
call v2f(vert)
vert{1) = x(i+1,])
vert(2) = y(i+1,])
. call v2f(vert)
cal! endlin
endif
if (flagh.eq.1.and.flag3.eq.1) then
call bgnlin
vert(1) = x(i+1,j+1)
vert(2) = y(i+1,J+1)
call v2f(vert)
vert(1) = x(i,j+1)
vert(2) = y(1,J+1)
call v2f(vert)
call endlin
endif

endif

400 continue
call closeo(REACT)

call makeob{ATTEN)
do 500 i = 2,nx-2
do 500 J = 2,ny-2

call bgnpol

nscale = 258 + nint(gray(i,J)*511.0)
call color(nscale)

vert(1) = x(1,J)

vert(2) = y(i,J)

call v2f(vert)

nscale = 258 + nint(gray(i+1,J)*511.0)
caill color(nscale)

vert{(1) = x{i+1,])

vert(2) = y(i+1,])

call v2f(vert)

PAGE Q

FILE: APTSX F Al (TTB104/P668L40 - Monday, May 4, 1992 = 6:00 pm)

nscale = 258 + nint(gray(i+1,J+1)*511.0)
call color(nscale)
vert(1l) = x(i+1,J+1)
vert(2) = y(i+1,j+1)
call v2f(vert)
nscale = 258 + nint{gray(i,j+1)%*511.0)
call color(nscale)
vert(1) = x(1,Jj+1)
vert(2) = y(i,Jj+1)
call v2f(vert)
call endpol
500 - continue
call closeo(ATTEN)

return
end

*

FILE: APT10X F Al (TTB104/P66840 - Monday, May 4, 1992 - 6:30 pm) PAGE (

program aptl10
*»********-IHHH#***

Ted Blackmon, GFW 4/15/92
App!ied Researh Lab
Penn State University

Animated particle trace for a 2-D, steady state, single phase,
recirculating flow in a closed combustor of a liquid metal fuel

-- Starting location of particles through input deck in program
-- Multi=-colored particles GREEN - Fuel phase

BLUE -~ Product phase

RED - Vapor phase
-- Particle color intensity controlled through volume fraction
-= Linear shape function velocity approximation
-- Huen predictor/corrector time stepping method

variable list:

¥ £ % £ ¥ ®* ¥ ¥ ¥ ¥ ¥ £ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥

nx, ny 2-D grid size (X,y)

nl - total number of phases

x(nx,ny) = x and y position data from CFD calculations

y(nx,ny) =

u(nx,ny,nt) = velocity components for each phase

v{nx,ny,nl)

uu(nx, ny) - velocity components for particle trace calculations

vv(nx,ny)

den - density values for each phase

phi - volume fraction values for each phase

phil - volume fraction data for transparency control

dt - computed time step size for path calculations
maxp - maximum points allowed for a path

np - number of points calculated for a path

px(maxp) = x and y positions of calculated points for a path
py(maxp) =

pu - x and y velocity calculated for a points on the path
pv -

pphi - volume fraction values along the particle trace
xint - x and y starting position

yint -

nob j - number of graphical objects created

iflag - equals zero if xint,yint is a valid location

subroutines called:

getdat - get data from CFD data file

dtime - compute time step size

edges - compute edges of flow fleld (max & min coordinates)
igraph = initialize graphics

defobj = define graphical objects (particle traces, backgrounds)
backgr - draw background images

heading - dispaly heading text
_pinput - process input (starting jocation) from left mouse button

£ % £ £ ¥ T £ £ ¥ ¥ £ ¥ X ¥ k ¥ ¥ X ¥ X ¥ kX £ ¥ ¥ £ £ F ¥ ¥ + £ ¥ ¥ ¥ ¥ ¥ ¥ ¥ £ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥
£ % % ¥ ¥ F X ¥ ¥ % £ ¥ ¥ £ ¥ ¥ £ ¥ ¥ ¥ ¥ ¥ ¥ ¥ X ¥ & ¥ ¥ ¥ ¥ %

FILE: APT10X F Al (TTB104/P66840 - Monday, May 4, 1992 - 6:30 pm) PAGE 00

* trace - calculate a particle trace . *
* modob] - modify graphical objects by adding the particle trace *
* *

include "fgl.h"
include "fdevice.h"

integer nx,ny,np,maxp,nobj,iflag

parameter (nx=29,ny=21,nl=3, maxp=200,nobj=100)

real x(nx,ny),y(nx,ny),px(maxp),py(maxp),pphi(maxp),dt,xlnt,ylnt
real uu(nx,ny),vv(nx,ny),u(nx,ny,nl),v(nx,ny,nl)

real den{nx,ny,nl),phi(nx,ny,nl),phil{nx,ny)

real xmax,xmin,ymax,ymin

common/bnd/xmax,xmin,ymax,ymin

BACKGR = nobj+3

call getdat(nx,ny,nl,x,y,u,v,den,phi)
call dtime(nx,ny,nl,x,y,u,v,dt)
call edges(nx,ny,X,Y)

call igraph(nobj)

call defobj{nobj,nx,ny,nt,x,y,u,Vv)
call dinit(nobj)

call headng(nx,ny,dt)

call qdevic(LEFTMO)

call qreset

call blendf(BFSA,BFMSA)

call afunct(0,AFNOTE)

#* caijculate particle traces

print *,'dt =',d¢
pause
dx = (xmax-xmin)/15
dy = (ymax-ymin)/11
do 200 xint = xmin+dx,xmax=-dx,dx
do 200 yint = ymin+dy,ymax=-dy,dy
do 200 1 = 1,nl
do 125 i = 1,nx
do 125 j = 1,ny
uu(i,J) = u(i, g,)
wii,j) = v(i,j, 1)
phil(i,j) = phi(l,J4,1)
125 continue
call trace(nx,ny,x,y,uu,vv,xlnt,ylnt,px,py,maxp,np,dt,nflag)
if (nflag.eq.0) then
print *,'not added to graphical objects'
else
call transp(nx,ny,maxp,np,X,y,phil,px,py,pphl)
cal!l modobj(nx,ny,nobj,!,X,y,px,py,pphi,maxp,np)
endif
200 continue

animation loop

F

*

ILE:

100

input CFD position and velocity data

10

20

30

4o

APT10X F Al (TTB104/P668L0 - Monday, May 4, 1992 - 6:30 pm)

do while (1)
do 100 | = 1,nobj
call caliob(BACKGR)
call callob(i)
call swapbu
continue
end do

end

subroutine getdat(nx,ny,nl,x,y,u,v,den,phi)

integer nx,ny,ni,nj,nl!

real x(nx,ny),y(nx,ny)

real u(nx,ny,nl),v(nx,ny,nl),den(nx,ny,nl),phi(nx,ny,nl)
real fsmach,alpha,re,time

call copen(14,!x2dxray.bin','r', istat)
call copen(15,'u2dvapr.bin’',’'r’, Istat)
call copen(16,'u2dfuel.bin','r',istat)
call copen(17,'u2dprod.bin','r', istat)

call cread(15,4,ni,istat)
call cread(15,4,nj, Istat)
print *,'ni =',ni
print *,'nj =',nj
if (nl.ne.nx.or.nj.ne.ny) then
print *,'wrong grid size 1'
stop
endif
cal! cread(15,4, fsmach, istat)
call cread(15,4,alpha, istat)
call cread(15,4,re, Istat)
call cread(15,4,time, istat)
do 10 j = 1,ny
i

do 10 = 1,nx
call cread(15,4,den(i,]J,1),istat)
continue
do 20 J = 1,ny
do 20 | = 1,nx
call cread(15,4,u(i,J,1),istat)
continue
do 30 j = 1,ny
do 30 | = 1,nx
call cread(15,4,v(i,J,1),Istat)
continue
do 40 j = 1,ny
do 40 i = 1,nx
call cread(15,4,phi(1,j,1),istat)
continue

PAGE Ol

FILE:

110

120

130

140

210

220

230

APT10X F Al (TTB104/P66840 - Monday, May 4, 1992 - 6:30 pm)

cali cread(16,4,ni, istat)
cal!l cread(16,4,nj, istat)
print *,'ni =',ni
print *,'nj =',nj
if (ni.ne.nx.or.nj.ne.ny) then
print *,'wrong grid size t'
stop
endif
call cread{16,4,fsmach, istat)
cal! cread(16,4,alpha,istat)
call cread{16,4,re, istat)
call cread(16,4,time,istat)
do 110 j = 1,ny
do 110 i = 1,nx
call cread(16,u4,den(i,j,2),istat)
cont inue
do 120 j = 1,ny
do 120 i = 1,nx
call cread(16,4,u(i,j,2),istat)
cont inue
do 130 j = 1,ny
do 130 | = 1,nx
call cread(16,4,v(1,]J,2),istat)
continue
do 140 j = 1,ny
do 140 | = 1,nx
call cread(16,4,phi(1,J,2),Istat)
continue

call cread{(17,4,ni, istat)
call cread(17,4,nj, istat)
print *,'ni =',ni
print *,'nj =',nJ
If (ni.ne.nx.or.nj.ne.ny) then
print *,'wrong grid size '
stop
endif
call cread(17,4, fsmach, istat)
cal!l cread(17,4,alpha,istat)
call cread(17,4,re, istat)
cal! cread(17,4,time, istat)
do 210 j = 1,ny
do 210 I = 1,nx
call cread(17,u4,den(i,j,3),istat)
continue
do 220 j = 1,ny
do 220 | = 1,nx
call cread(17,4,u(i,J,3),istat)
continue
do 230 § = 1,ny
do 230 | = 1,nx
call cread(17,4,v(i,J,3),istat)
continue
do 240 § = 1,ny
do 240 | = 1,nx

PAGE 00

F

ILE: APT10X F A1 (TTB104/P66840 - Monday, May 4, 1992 - 6:30 pm)

call cread(17,4,phi(i,J,3),Istat)’

240 continue

*

call cread(14,4,ni,istat)

cal! cread(14,4,nj,Istat)

print *,'ni =", ni

print #,'nj =',nj

if (ni.ne.nx.or.nj.ne.ny) then
print *, 'wrong grid size 1'

stop
endif
do 250 j = 1,ny
do 250 i = 1,nx

call cread(14,4,x(i,J),istat)
250 continue
do 260 j = 1,ny
do 260 | = 1,nx
call cread(14,4,y(i,J), istat)
260 continue

return
end

subroutine igraph(nobj)

Initialize graphics window and draw bound¥ies

include "fgl.h"
include "fdevice.h"

real xmax,xmin,ymax,ymin,xbnd,ybnd,xup,xlow,yup,yiow
real cvect(4),vect(3)
common/bnd/xmax, xmin, ymax,ymin

dx = (xmax=xmin)

dy = (ymax-ymin)

xup = xmax + . 1%dx

xliow = xmin = ,1%dx

yup = ymax + ,3*dy

ylow = ymin =-dy -.3%*dy

Zlow = -1.0

zhi = 1.0

call! foregr

call prefpo(0,640,0,512)

iwop = winope('Particle Trace',14)
call winpop

call concav(.true.)

call doubie

cal!l RGBmod

call gconfi

call ortho(xlow,xup,ylow,yup,ztow,zhi)
call zbuffe(TRUE)

call zclear

FILE: APTI0X F Al (TTB104/P66840 - Monday, May 4, 1992 = 6:30 pm)
return
end

»

»

I W

subroutine headng(nx,ny,dt)

display heading and message to start new particle trace

include "fgl!.h"
include "fdevice.h"

integer nx,ny, sx, sy

integer Ift,rght,bttm, tp

real xmax,xmin,ymax,ymin,dt,cvect(4),vert(2)
common/bnd/xmax,xmin, ymax,ymin

dx (xmax=xmin)

dy = (ymax=ymin)

Xup = xmax + . 1#dx
xXlow = xmin =~ ,1#*dx
yup = ymax + ,3#*dy
ylow = ymin =dy =-.3*dy

call frontb(.true.)
cvect(1) = 0.5

cvect(2) = 0.5
cvect(3) = 0.5
cvect(l4) = 1.0

call cu4f(cvect)

xp = xmin

yp = ymin = ,2%dy

call cmov2(xp,yp)

call charst('Animated particle trace #10
yp = yp - (32./512.)*(yup - ylow)

call cmovZ2({xp,yp)

call charst(' CFD data files: x2dxray.bin, x2dfuel.bin

yp = yp = (15./512.)*(yup -~ ylow)
cal!l cmov2(xp,yp)

call charst(' x2dprod.bin, x2dvapr.bin

yp = yp = (24,./512.)%(yup = ylow)

call cmov2(xp,yp)

cal!l charst(' grid size: (29 , 23)

yp = yp = (18./512,)*(yup - ylow)

cal!l cmov2(xp,yp)

call charst(' (xmin,xmax): (0.0 , 1.049)} m
yp = yp = (18./512.)*(yup - ylow)

call cmov2(xp,yp)

call charst(' (ymin,ymax): (0.0 , .3937) m
yp = yp - (18./512.)#(yup = ylow)

call cmov2(xp,yp)

call charst(' dt: 2.342e-2 m/s

yp = yp = (24./512.)%(yup - ylow)

call cmov2(xp,yp)

',u6)

',46)

',u6)

',u6)

',u6)

',u6)

',U6)

PAGE 00

FILE: AP

ca
yp
ca
ca
yp
ca
ca
yp
ca
ca
ca

ca
ca

T10X F Al (TTB104/P668U0 - Monday, May L,
Il charst('Separate particle traces for each phase
= yp - (15./512.)*{yup - ylow)

|| cmov2(xp,yp)

It charst('and phases distinguished through color

= yp - (20./512.)#(yup - ylow)

11 cmov2(xp,yp)

1t charst{'Color intensity of phases controlled
= yp - (15./512.)*(yup - ylow)

i1 cmov2(xp,yp)

11 charst{'through volume fraction data

Il bgntin

vert(1) = xmax = .05%dx

vert(2) = ymin = .2*dy

call v2f(vert)
vert(1) = xmax
vert(2) = ymin
call va2f(vert)
vert(1) = xmax
vert(2) = ymin
call va2f(vert)
11 endlin

Il bgnlin

vert(1) = xmax
vert(2) = ymin
call v2f(vert)
vert(1) = xmax
vert(2) = ymin
call v2f(vert)

- .2#%dy - .05*dx

- .2%dy - .03*dx

- .2#%dy - .05%dx

- .02%dx
- .2%dy = .05%dx

call endlin

Xp = Xmax

yp = ymin = .2%dy

call cmov2(xp,yp)

call charst('g',1)

cvect(1) = 0.0

cvect(2) = 1.0

cvect(3) = 0.0

cvect{l4) = 1.0

call clf(cvect)

xp = xmax = .25%dx

yp = ymin = .2%dy = .25%dx
call cmov2(Xxp,yp)

call charst('GREEN: Fuel',11)
cvect(1) = 0.0

cvect(2) = 0.0

cvect(3) = 1.0

cvect(4) = 1.0

call cluf(cvect)

yp = yp = (18./512.)*(yup - ylow)
call cmov2({xp,yp)

call charst('BLUE: Product',13)
cvect(1) = 1.0

cvect(2) = 0.0

cvect(3) = 0.0

cvect(4) = 1.0

1992 - 6:30 pm)

',u6)

',u6)

',u6)

',46)

PAGE O

FILE:

* * #

150

200

250

APT10X F Al (TTB104/P66840 - Monday, May 4, 1992 - 6:30 pm)

call clhf(cvect)

yp = yp - (18./512.)%(yup - ylow)
call cmov2(xp,yp)

call charst('RED: vapor',10)

call frontb(.false.)

return
end

subroutine defobj(nobj,nx,ny,nl,x,y,u,Vv)

define graphical objects #1 to #nobj for the paths,
GRID for the grid, and REACT for the reactor boundries
and BACKGR for the black background to erase the particles

include "fgl.h"
include "fdevice.h"

integer nobj,GRID, REACT, nx, ny

real x(nx,ny),y(nx,ny),u(nx,ny,nl),v{nx,ny,ni)
real vert({3),cvect(ld4),vect(3)

real xmax,xmin,ymax,ymin
common/bnd/xmax,xmin,ymax,ymin

GRID = nobj+1
REACT = nobj+2
BACKGR = nobj+3

do 150 J = 1,nobj
cal!l makeob(J)
call linewi(3)
call closeo(j)
continue

call makeob{GRID)
cvect(1) = .04
cvect(2) = .04
cvect(3) .04
cvect(l) 1.
call cuf(cvect)
call linewi(1)
do 250 i = 1,nx
call bgnlin
do 200 j = 1,ny
vert(1) x(i,J)
vert(2) = y(i,J)
vert(3) = 1.0
call v3f(vert)
continue
call endiin
continue
do 350 j = 1,ny

PAGE 00

FILE:

300

350

450

APT10X F Al (TTB104/P668L0 - Monday, May 4, 1992 - 6:30 pm)

call bgnlin

do 300 | = 1,nx
vert(1) = x(i,4)
vert(2) = y(i,J)

vert(3) = 1.0
call v3f(vert)
continue
call endlin
continue
call closeo(GRID)

call makeob(REACT)
cvect(1) 0.
cvect(2) = 0.
cvect(3) 0.5
cvect(4) 1.
call cluf(cvect)
call tinewi(3)
do 400 j = 1,ny-1
do 400 I = 1,nx-1
flagl
flag2
flag3
flagl
flagt
do 450 | = 1,nl!
if (u(i,J,1).ne.0.0.or.v(i,j,1).ne.0.0) then
flag! = 0
endif
if (u(l+1,J,l).ne.0.0.or.v(l+1,J,l).ne.o.0) then
flaga2 = 0
endif -
if (u(I,J+1,I).ne.0.0.or.v(I,J+1,l).ne.0.0) then
flagd = 0
endif
if (u(i+1,J+1,I).ne.O.o.or.v(l+1,J+1,I).ne.0.0) then
flagh = 0
endif
continue
flagt = flagl+flag2+flag3+flagl
if (flagt.ge.2) then

i}

1}

.

i
- b b b -
. .

draw solid surface

if (flagt.eq.B) then

call bgnpol
vert(1) = x(i,J)
vert(2) = y(i,J)
vert(3) = 1.0

call v3f(vert)
vert(1) = x(i+1,]j)
vert(2) = y(i+1,])
vert(3) = 1.0

call v3f(vert)
vert(1) = x(i+1,j+1)

PAGE 0O

FILE:

*

APT10X F Al (TTB104/P66840 - Monday, May 4, 1992 - 6:30 pm)

vert(2) = y(i+1,j+1)
vert(3) = 1.0

call v3f(vert)
vert(1) = x{(1,j+1)
vert(2) = y(1,J+1)
vert(3) = 1.0

call v3f(vert)

call endpol
endif

draw solid walls

if (flagl.eq.1.and.flag2.eq.1) then
call bgniin
vert(1) = x(i,J)
vert{2) = y(i,J)
vert(3) = 1.0
call v3f(vert)

1}

vert(1) = x(i+1,])
vert(2) = y(i+1,])
vert{(3) = 1.0

call v3f(vert)
call endlin
endif
if (flagl.eq.1.and.flag3.eq.1) then
call bgnlin
vert(1) = x(1,J)
vert(2) = y(i,]J)
vert(3) = 1.0
call v3f(vert)
vert(1) = x(i,J+1)
vert(2) = y(i,J+1)
vert(3) = 1.0
call v3f(vert)
call endlin
endif
if (flag.eq.1.and.flag2.eq.1) then
call bgnlin
vert{1) = x(i+1,j+1)
vert(2) y(i+1,j+1)
vert(3) = 1.0
call v3f(vert)
vert(1) = x(i+1,])
vert(2) = y(i+1,])
vert(3) = 1.0
call v3f(vert)
call endlin

"

endif
if (flagh.eq.1.and.flag3d.eq.1) then
catl bgnlin

vert{1) = x{i+1,j+1)
vert(2) = y(i+1,j+1)
vert(3) = 1.0

call v3f(vert)
vert(1) = x(i,j+1)

PAGE 00

FILE: APT10X F Al

400

vert(2) =

(TTB104/P66840 - Monday, May 4, 1992 - 6:30 pm)

y(i,J+1)

vert(3) = 1.0
call v3f(vert)

call endlin

endif
endif
continue
call closeo{REACT)

define graphical object for the BLACK background to erase the particles

*

dx = (xmax=xmin)
dy = (ymax-ymin)
xup = xmax + .1*dx
xlow = xmin = ,1%dx
yup = ymax + .3*dy

ylow = ymin -dy =.3*dy

cvect(1)
cvect(2) =
cvect(3)
cvect(l)
vect(1)
vect(2) ymin
vect(3) 0.0
call makeob(BACKGR)
cal! bgnpol
call clf(cvect)
call v3f{vect)
call closeo(BACKGR)
vect{1) = xmax
vect(2) ymin
vect(3) 0.0
call editob(BACKGR)
call v3f(vect)
call closeo(BACKGR)
vect(1) = xmax
vect(2) ymax
vect(3) = 0.0
call editob(BACKGR)
call v3f{vect)
call closeo(BACKGR)
vect(1) = xmin
vect(2) = ymax
vect(3) 0.0
call editob(BACKGR)
call v3f{vect)
call endpol
call closeo(BACKGR)

!
[= 2=

1.
xmin

return
end

subroutine dinit(nobj)

PAGE (

FILE: APT10X F Al (TTB104/P66840 - Monday, May 4, 1992 - 6:30 pm)

* initlalize graphics drawing

inctude "fgl.h"
include "fdevice.h"

integer nobj,GRID, REACT
real xmax,xmin,ymax,ymin,cvect(l)
common/bnd/xmax,xmin, ymax,ymin

GRID = nobj+1
REACT = nobj+2

cvect(1) = 0.
cvect(2) = O.
cvect(3) = 0.
cvect(l) = 1,

call cluf(cvect)

cail frontb(.true.)
call clesr

call callob(GRID)
cal!l callob(REACT)
call frontb(.false.)

return
end

*

*

»

subroutine modobj(nx,ny,nob]j, 1,x,y,pX,py,pphi,maxp,np)

modify the graphical objects by adding the path recentiy defined

include "fgl.h"
inctude "fdevice.h"

integer nx,ny,ni,nobj,maxp,np,bsplin

real x{nx,ny),y(nx,ny),pphi(maxp),cvect{l)

real px(maxp),py(maxp),xpt,ypt,geom(3,L4)

real xmax,xmin,ymax,ymin,rad,msix,asix,tthr,bspmat(4,4)
common/bnd/xmax,xmin, ymax,ymin

parameter (bsplin=3,msix=-1.0/6.0,3six=1.0/6.0,tthr=2.0/3.0)

data bspmat/ msix, .5, =.5, asix,

+ .5, =1.0, .5, 0.0,
+ -.5, 0.0, .5, 0.0,
+ asix, tthr, asix, 0.0/

cvect(1) = O.

cvect(2) = O.

cvect(3) = 0.

cvect(4) = 0.

cvect(!) = 1.0

npm3 = np-3

* represent particies with B-splines through four consecutive time steps

PAGE 00

FILE: APT10X F Al (TTB104/P66840 - Monday, May U4, 1992 - 6:30 pm) PAGE (

#* for a particle trace, draw a particle every nobj timestep, and
increment one timestep each graphical object

*

*

define an aipha value (cvect(4)) to control transparency through
volume fraction data (pphi)

*

call defbas{(bsplin,bspmat)
call curveb(bspiin)
do 100 i = 1,nobj
do 200 J = ,npm3,nobj
ic=20
phisum = 0.0
do 300 k = J,Jj*3
fc = ic+l
phisum = phisum + pphi(Kk)
geom(1,ic) = px(Kk)

geom(2, ic) = py(k)
geom(3,ic) = 0.0 |
\

300 continue ‘

define an alpha value (cvect(l4)) to control transparency through
*# yvolume fraction data (pphi)

phiave = phisum/4.0
cvect(l4) = amax1(0.0,phiave)
call editob(i)
call cif(cvect)
cail crv(geom)
call closeo(l)
200 continue

#» eliminate disappearing particles to avold blinking during animation

if (f.gt.npm3) then

J = i=((i=1)/npm3)*npm3

ic=0

phisum = 0.0

do 400 k = J,j+3
ic = ict+l
phisum = phisum + pphi(k)
geom{1,ic) = px(k)

geom(2, ic) = py(k)
geom(3,ic) = 0.0
LTo]o] continue

phiave = phisum/4.0
cvect(l) = amax1(0.0,phiave)
call editob(1i)
call cluf{cvect)
call crv(geom)
call closeo(i)
endif
100 continue

return

FILE: APTI10X F Al (TTB104/P66840 - Monday, May L, 1992 - 6:30 pm)

*

end

subroutine transp(nx,ny,maxp,np,X,y,phil,px,py,pphl)

calculate particle transparency based on volume fraction data

*

100

integer nx,ny,maxp,np,md,od

real x(nx,ny),y(nx,ny),phil(nx,ny)
real px{maxp),py(maxp),pphi(maxp)
real xc,yc,xx,yy,b,a,cl1,c2,e(ld)

do 100 ii = 1,np
od =0
md = 0
Jj = 11+

call ploc(nx,ny,x,Y,PX,py,maxp,JJ,0d, md)
If (od.ne.0) then
i = (od=1)/ny + 1
J =o0od = (i=1)*ny
pphi(il) = phit(i,j)
else if (md.ne.0) then
i = (md=1)/ny + 1
J =md = (i=1)*ny
xc = (x(i+1,]J) + x(i,J))/2.0
ye = (y(i,J+1) + y(1,J))/2.0
b = (x(i+1,J) - x(i,J))/2.0
a = (y(i,J+1) - y(i,J))/2.0
xx = px{(ii) = xc
yy = py(it) = yec
cl = xx/b
c2 = yy/a
(1) = .25%(1~c1)*(1-c2)
e(2) L25%(1+c1)*(1~c2)
e(3) L25%(1+c1)*(14c2)
e(lt) = .25%(1-c1)*(1+c2)
pphi(ti)=e(1)*philI(i,j)+e(2)*phii(i+1,j)+

"

& e(3)*phil(i+1,j+1)+e(U)*phil (i, j+1)
else
print #,'particle out of grid'
stop
endif
continue
return
end

PAGE 00

FILE: APT3MINT F Al (TTB1O4/P66840 - Monday, May 4, 1992 - 5:49 pm) PAGE O

integer nx, ny,np,maxp,nobj, iflag
parameter (nx=u6,ny=2u,maxp=500,nobj=u97)
real x(nx,ny),y(nx,ny),u(nx,ny),v(nx,ny)
real px(maxp),py(maxp),dt,xlnt,ylnt

real Xxmax,xmin,ymax,ymin
common/bnd/xmax, xmin,ymax,ymin

call getdat(nx,ny,x,y,u,Vv)

cat! edges(nx,ny,X,y)

call dtime(nx,ny,x,y,u,v,dt)
call igraph

call deFobJ(nobJ,nx,ny,x,y,u,v)
call dinit(nob])

call headng(nx,ny,dt)

* compute 98 particle traces for the timeline

xint = xmin + (xmax-xmin)/2.
dy = (ymax-ymin)/100
do 50 npt = 1,98
yint = ymin + npt¥*dy
call trace(nx,ny,x,y,u,v,xlnt,ylnt,px,py,maxp,np,dt,nflag)
if (nflag.eq.0) then
print *,'not added to graphical objects'
else
cal! modobj(nobj,px,py,maxp,np)
endif
50 continue

* begin animation loop

call writem(7)
do while (1)
call color{BLACK)
call clear
cal! cailob(1)
call swapbu
call sieep(5)
do 100 | = 2,nobj
call color(BLACK)
catl clear
call callob{i)
call swapbu
100 continue
end do
call qreset

end

*

subroutine headng(nx,ny,dt)

display heading and message to start new particle trace

FILE: APT3MINT F Al (TTB104/P66840 - Monday, May 4, 1992 = 5:49 pm) PAGE 00

include "fgl.h"
include "fdevice.h"

integer nx,ny,sX,sy

integer Ift,rght,bttm,tp

real xmax,xmin,ymax,ymin,dt
common/bnd/xmax,xmin,ymax,ymin

do 100 k = 1,8
call mapcoi{655+k, 100,100, 100)

100 continue

dx = (xmax-=xmin)

dy = (ymax-ymin)

xup = xmax + ,1#*dx

xfow = xmin = ,1#*dx

yup = ymax + ,3*dy

ylow = ymin =dy =.3*dy

call frontb(.true.)

call color{(656)

Xp = Xmin

yp = ymin = ,2%dy

cal!l cmov2(xp,yp)

call charst('Animated particle trace #3 ',46)
yp = yp - (32./512.)*(yup - ylow)

call cmov2(xp,yp)

call charst{' CFD data file: mint.bin ',u6)
yp = yp = (24./512.)%(yup - ylow)

call cmov2(xp,yp)

call charst(' grid size: (46 , 24) ',u6)
yp = yp - (18./512.)*(yup - ylow)

call cmov2(Xxp,yp)

call charst(' (xmin,xmax): (0.0 , .3556) m ',46)
yp = yp = (18./512.)*(yup = ylow)

call cmov2(xp,yp)

cali charst(' (ymin,ymax): (0.0 , .04445) m ',u6)
yp = yp - (18./512.)*%(yup = ylow)

cal! cmov2(xp,yp)

call charst(' dt: .007347 m/s ',u6)
yp = yp = (24./512.)%(yup = ylow)

call cmov2(xp,yp)

call charst('Initial column of particle traces calculated to',47)
yp = yp - {18./512.)*(yup - ylow)

call cmov2(Xxp,yp)

call charst('generate a timeline. Total # particle traces: 98',48)
call frontb(.false.)

return
end

#*

»

*

References

10.

11.

White, Frank M., Fluid Mechanics, 2nd ed., McGraw Hill Book
Co., New York,1986.

'Flow Visualization', ASME Film Catalog, Journal of Fluids
Engineering, 1976

'‘Computer Generated Flow Visualizatiom Motion Pictures',
NASA Lewis Research Center, Cleveland OH

Van Dyke, Milton, An_Album_of Fluid Motion, Parabolic Press,
Stanford, CA, 1982

Merzkirich, W., Flow Visualization, Academic Press, New York,
1974.

Visualization, Joint ASCE/ASME Mechanics Conference,
Albequerque, NM, 1985.

Asanuma, T., Flow Visualization, International Symposium on
Flow Visualization, Tokoyo, Japan, 1977.

Yang, Wen-Jei, Handbook of Flow Visyalization, Hemisphere
Pub. Co., New York, 1989.

Flow Visualization -1989, Winter Anula Meeting of the ASME,
San Francisco, CA, 1989.

Flow Visualization III, 3rd International Symposium on Flow
Visualization, Ann Arbor, MI, 1985.

Flow Visyalization IV, 4th International Symposium on Flow

Visualization, Paris, France, 1986.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Parnell, L.A. et. al., AIAA 87-1808, AIAA/ASME/SAE/ASEE
23rd Joint Propulsion Conference, Montery, CA, 1989.

Parnell, L.A. et. al., AIAA 89-2825, AIAA/ASME/SAE/ASEE
25th Joint Propulsion Conference, Montery, CA, 1989.

Buning, P., Walatka, P.P.,, PLOT 3D, Sterling Software, NASA
Ames Research Center, 1988

Walatka, P.P., FAST, NASA Ames Resaerch Center WAO RND,
1991

Buning, P.G. et. al., AIAA 85-1507, AIAA 7th Computational
Fluid Dyanamics Conference, Cincinatti, OH 1985.

Buning, P.G. et. al., 'Flow Visualization of CFD using Graphics
Workstations', AIAA 8th Computational Fluid Dyanamics
Conference, Honolulu,1987.

Buning, P.G. et. al., 'Use of Computer Graphics for Visualization
of Flow Fields', AIAA Aecrospace Engineering Conference, Los
Angeles, 1987.

Miller, T.F., Numerical Simulation of the Flowfield in a Liquid
Metal Combustion Chamber', 23rd JANNAF Combustion ™
Meeting,. Cheyene, WY, 1990

Globus, A., Levit, C., and Lasinski, T., ‘A Tool for Visualizing the
Topology of Three-Dimensional Vector Fields', Report RNR-91-
017, Moffet Field, CA, 1991.

Helman, JL., and Hesselink, L., 'Visualizing Vector Field
Topology in Fluid Flows', IEEE Computer Graphics and
Applications, May, 1991.

22.

23.

24.

25.

26.

27.

Thalmann, D., Scientific Visualization and Graphics Simulation,
Wiley, Chirchester, 1990.

Goss, M.E., 'A Real Time Particle System for Display of Ship
Wakes', JEEE Computer Graphics and Applications, May, 1990.

Reeves, W.T., P'article Systems- a Technique for Modelling a
Class of Fuzzy Objects', Computer Graphics, July, 1983.

Ramsden, D. and Holloway, G., 'Timestepping Lagrangian
Particles in Two Dimensional Eulerian Flow Fields', Journal of
Computational Physics 95, 1991.

Segerlind, L.J., Applied Finite Element Analysis, Wiley, New
York, 1978.

Bclegundu, A.D., and Chandrupatla, T.R., Intorduction to Finite
Elements in Engineering, Prentice Hall, Englewood, N.J., 1991.

